Co-reporter:Husain Attarwala, Valerie Clausen, Prasoon Chaturvedi, and Mansoor M. Amiji
Molecular Pharmaceutics September 5, 2017 Volume 14(Issue 9) pp:3036-3036
Publication Date(Web):July 24, 2017
DOI:10.1021/acs.molpharmaceut.7b00233
In this study, we have developed a type B gelatin nanoparticle based siRNA delivery system for silencing of intestinal transglutaminase-2 (TG2) and interleukin-15 (IL-15) genes in cultured human intestinal epithelial cells (Caco-2) and murine alveolar macrophage cells (J774A.1). Small interfering RNA (siRNA) targeting the TG2 or IL-15 gene was encapsulated within gelatin nanoparticles using ethanol–water solvent displacement method. Size, charge, and morphology of gelatin nanoparticles were evaluated using a Zetasizer instrument and transmission electron microscopy. siRNA encapsulation efficiency was determined using an siRNA specific stem-loop quantitative polymerase chain reaction (qPCR) assay. Cellular uptake of siRNA-containing gelatin nanoparticles was determined using fluorescent microscopy and stem-loop qPCR assay. siRNA loading in the RISC (RNA-induced silencing complex) was determined by immunoprecipitation of argonaute 2 (AGO2) protein followed by stem-loop qPCR for siRNA quantification. Gene expression analysis of TG2, IL-15, and the proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), was performed using qPCR assays. Efficacy of silencing TG2 and IL-15 knockdown was evaluated in an in vitro model of celiac disease by utilizing immunogenic α-gliadin peptide p31–43 in cultured J774A.1 cells. siRNA-containing gelatin nanoparticles were spherical in shape with mean particle size and charge of 217 ± 8.39 nm and −6.2 ± 0.95 mV, respectively. siRNA loading efficiency within gelatin nanoparticles was found to be 89.3 ± 3.05%. Evaluations of cellular uptake using fluorescent microscopy showed rapid internalization of gelatin nanoparticles within 2 h of dosing, with cytosolic localization of delivered siRNA in Caco-2 cells. Gelatin nanoparticles showed greater intracellular siRNA exposure with a longer half-life, when compared to Lipofectamine-mediated siRNA delivery. Approximately 0.1% of total intracellular siRNA was associated in the RISC complex. A maximum knockdown of 60% was observed at 72 h post siRNA treatment for both TG2 and IL-15 genes, which corresponded to ∼200 copies of RISC associated siRNA. Further, efficacy of gelatin nanoparticle mediated knockdown of TG2 and IL-15 mRNA was tested in an in vitro model of celiac disease. Significant suppression in the levels of proinflammatory cytokines (TNF-α and IFN-γ) was observed in p31–43 stimulated J774A.1 cells upon either IL-15 or IL-15 + TG2 siRNA treatment. The results from this study indicate that gelatin nanoparticle mediated TG2 and IL-15 siRNA gene silencing is a very promising approach for the treatment of celiac disease.Keywords: celiac disease; gene silencing; interleukin-15; transglutaminase 2; type B gelatin nanoparticles;
Co-reporter:Neha N. Parayath, Mansoor M. Amiji
Journal of Controlled Release 2017 Volume 258(Volume 258) pp:
Publication Date(Web):28 July 2017
DOI:10.1016/j.jconrel.2017.05.004
Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations.Download high-res image (220KB)Download full-size image
Co-reporter:Ana Vanessa Nascimento, Amit Singh, Hassan Bousbaa, Domingos Ferreira, ... Mansoor M. Amiji
Acta Biomaterialia 2017 Volume 47(Volume 47) pp:
Publication Date(Web):1 January 2017
DOI:10.1016/j.actbio.2016.09.045
Efficiency of chemotherapy is often limited by low therapeutic index of the drug as well as emergence of inherent and acquired drug resistance in cancer cells. As a common strategy to overcome drug resistance, higher doses of chemo-agents are administered. However, adverse side effects are usually increased as a consequence. A potentially effective approach is to combine chemotherapy with other therapeutic strategies such as small interfering RNAs (siRNAs) that allow the use of lower yet efficient doses of the anticancer drugs. We previously developed epidermal growth factor receptor (EGFR)-targeted chitosan (CS) nanoparticles as a versatile delivery system for silencing the essential mitotic checkpoint gene Mad2, and induce cell death. Here, we tested this system as a single therapy and in combination with cisplatin in cisplatin sensitive and resistant lung cancer models, and characterized its in vivo efficacy and safety. Combination treatment resulted in significant improvement in tumor inhibition that was strikingly more effective in cisplatin-resistant tumors. Importantly, effective cisplatin dosage was dramatically reduced in the co-therapy regimen resulting in negligible toxic effects from the drug as confirmed by parameters such as body weight gain, biochemical markers of hepatic and renal function, and histopathology of liver/kidney/spleen tissues. Overall, we demonstrate that the combination of Mad2 siRNA-loaded CS nanoparticles strategy with chemotherapeutic agents such as cisplatin constitutes an efficient and safe approach for the treatment of drug resistant tumors.Statement of SignificanceLung cancer remains one of the leading killers in the United States and around the world. Platinum agents, including cisplatin, are the first line treatment in lung cancer, including non-small cell lung cancer (NSCLC), which is the predominant form of lung cancer. In this study, we have evaluated Mad2 cell-cycle checkpoint gene silencing using small interfering RNA (siRNA) delivered systemically using epidermal growth factor receptor-targeted chitosan nanoparticles in drug sensitive and resistant models of NSCLC. Our results show that Mad2 gene silencing using targeted chitosan nanoparticles has tremendous potential in overcoming platinum resistance in NSCLC.Download high-res image (220KB)Download full-size image
Co-reporter:Ekta Kadakia;Lipa Shah
Pharmaceutical Research 2017 Volume 34( Issue 7) pp:1416-1427
Publication Date(Web):07 April 2017
DOI:10.1007/s11095-017-2158-7
Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes.Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution.Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion.Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don’t inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
Co-reporter:Verbena Y. Kosovrasti, Lubomir V. Nechev, and Mansoor M. Amiji
Molecular Pharmaceutics 2016 Volume 13(Issue 10) pp:3404-3416
Publication Date(Web):August 23, 2016
DOI:10.1021/acs.molpharmaceut.6b00398
The main goal of this study was to evaluate tumor necrosis factor-alpha (TNF-α) gene silencing in peritoneal macrophages upon activation with lipopolysaccharide (LPS), using CD44-targeting hyaluronic acid (HA)-based nanoparticles encapsulating TNF-α-specific small interfering RNA (siTNF-α). HA nanoparticles were formulated by blending hyaluronic acid-poly(ethylene imine) (HA-PEI), hyaluronic acid-hexyl fatty acid (HA-C6), and hyaluronic acid-poly(ethylene glycol) (HA-PEG) in 3:2:1 weight ratio, and encapsulating siTNF-α to form spherical particles of 78–90 nm diameter. Following intraperitoneal (IP) administration in LPS-treated C57BL/6 mice, the nanoparticles were actively taken up by macrophages and led to a significant downregulation of peritoneal TNF-α level. Downregulation of peritoneal macrophage-specific TNF-α also had a significant impact on other pro-inflammatory cytokine and chemokine levels in the serum. The C57BL/6 group of mice challenged with 5 mg/kg LPS had a significantly higher survival rate when they were treated with 3 mg/kg siTNF-α, either prior or simultaneously with the LPS administration, as compared to the LPS-challenged mice, which were treated with controls including the scrambled siRNA formulation. Overall, the results of this study demonstrate that CD44 targeting HA nanoparticles can selectively deliver siTNF-α to peritoneal macrophages leading to downregulation of pro-inflammatory cytokines in the peritoneal fluid and in the serum. This RNAi strategy could potentially provide an important therapeutic modality for acute inflammatory diseases, such as septic shock.Keywords: CD44 targeting hyaluronic acid nanoparticles; LPS-induced inflammation; peritoneal macrophages; siRNA; TNF-α silencing;
Co-reporter:Sunita Yadav, Srujan K. Gandham, Riccardo Panicucci, Mansoor M. Amiji
Nanomedicine: Nanotechnology, Biology and Medicine 2016 Volume 12(Issue 4) pp:987-1002
Publication Date(Web):May 2016
DOI:10.1016/j.nano.2015.12.374
Neuroinflammation is a hallmark of acute and chronic neurodegenerative disorders. The main aim of this study was to evaluate the therapeutic efficacy of intranasal cationic nanoemulsion encapsulating an anti-TNFα siRNA, for potential anti-inflammatory therapy. TNFα siRNA nanoemulsions were prepared and characterized for particle size, surface charge, morphology, and stability and encapsulation efficiency. Qualitative and quantitative intracellular uptake studies by confocal imaging and flow cytometry, respectively, showed higher uptake compared to Lipofectamine® transfected siRNA. Nanoemulsion significantly lowered TNFα levels in LPS-stimulated cells. Upon intranasal delivery of cationic nanoemulsions almost 5 fold higher uptake was observed in the rat brain compared to non-encapsulated siRNA. More importantly, intranasal delivery of TNFα siRNA nanoemulsions in vivo markedly reduced the unregulated levels of TNFα in an LPS-induced model of neuroinflammation. These results indicate that intranasal delivery of cationic nanoemulsions encapsulating TNFα siRNA offered an efficient means of gene knockdown and this approach has significant potential in prevention of neuroinflammation.From the Clinical EditorNeuroinflammation is often seen in patients with neurodegenerative disorders and tumor necrosis factor-alpha (TNFα) plays a significant role in contributing to neuronal dysfunction. As a result, inhibition of TNFα may alleviate disease severity. In this article, the authors investigated using a cationic nanoemulsion system carrying TNFα siRNA intra-nasally to protect against neuroinflammation. This new method may provide a future approach in this clinical setting.The figure summarizes in vitro and in vivo studies in this publication that show the feasibility of intransal delivery of tumor necrosis factor-alpha (TNFα) gene silencing small interfering RNA (siRNA) administered using cationic oil-in-water nanoemulsion formulations in a lipopolysaccharide-induced neuro-inflammation model established in Sprague–Dawley rats.
Co-reporter:M Trivedi, M Talekar, P Shah, Q Ouyang and M Amiji
Oncogenesis 2016 Volume 5(Aug) pp:e250
Publication Date(Web):2016-08-01
DOI:10.1038/oncsis.2016.52
Exosomes are responsible for intercellular communication between tumor cells and others in the tumor microenvironment. These microvesicles promote oncogensis and can support towards metastasis by promoting a pro-tumorogenic environment. Modifying the exosomal content and exosome delivery are emerging novel cancer therapies. However, the clinical translation is limited due to feasibility of isolating and delivery of treated exosomes as well as an associated immune response in patients. In this study, we provide proof-of-concept for a novel treatment approach for manipulating exosomal content by genetic transfection of tumor cells using dual-targeted hyaluronic acid-based nanoparticles. Following transfection with plasmid DNA encoding for wild-type p53 (wt-p53) and microRNA-125b (miR-125b), we evaluate the transgene expression in the SK-LU-1 cells and in the secreted exosomes. Furthermore, along with modulation of wt-p53 and miR-125b expression, we also show that the exosomes (i.e., wt-p53/exo, miR-125b/exo and combination/exo) have a reprogramed global miRNA profile. The miRNAs in the exosomes were mainly related to the activation of genes associated with apoptosis as well as p53 signaling. More importantly, these altered miRNA levels in the exosomes could mediate macrophage repolarization towards a more pro-inflammatory/antitumor M1 phenotype. However, further studies, especially in vivo studies, are warranted to assess the direct influence of such macrophage reprogramming on cancer cells and oncogenesis post-treatment. The current study provides a novel platform enabling the development of therapeutic strategies affecting not only the cancer cells but also the tumor microenvironment by utilizing the ‘bystander effect’ through genetic transfer with secreted exosomes. Such modification could also support antitumor environment leading to decreased oncogenesis.
Co-reporter:Amit Singh, Jing Xu, George Mattheolabakis, Mansoor Amiji
Nanomedicine: Nanotechnology, Biology and Medicine 2016 Volume 12(Issue 3) pp:589-600
Publication Date(Web):April 2016
DOI:10.1016/j.nano.2015.11.010
In this study, we have formulated redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a targeted vector for systemic delivery of gemcitabine therapy in pancreatic cancer. The gelatin nanoparticles were formed by ethanol-induced desolvation process to encapsulate the bound drug. The surface of the nanoparticles was decorated either with poly(ethylene glycol) (PEG) chains to impart enhanced circulation time or with EGFR targeting peptide to confer target specificity. Our in vitro studies in Panc-1 human pancreatic ductal adenocarcinoma cells confirm that gemcitabine encapsulated in EGFR-targeted gelatin nanoparticles, released through disulfide bond cleavage, had a significantly improved cytotoxic profile. Further, the in vivo anticancer activity was evaluated in an orthotopic pancreatic adenocarcinoma tumor bearing SCID beige mice, which confirmed that EGFR-targeted gelatin nanoparticles could efficiently deliver gemcitabine to the tumor leading to higher therapeutic benefit as compared to the drug in solution.From the Clinical EditorThe treatment of pancreatic cancer remains unsatisfactory, with an average 5-year survival of less than 5%. New treatment modalities are thus urgently needed. In this study, the authors presented their formulation of redox-responsive epidermal growth factor receptor (EGFR)-targeted type B gelatin nanoparticles as a carrier for gemcitabine. In-vitro and in-vivo experiments showed encouraging results. It is hoped that the findings would provide a novel and alternative drug delivery platform for the future.Formulation of epidermal growth factor receptor-targeted redox-responsive gelatin nanoparticles encapsulating gemcitabine through disulfide conjugation for systemic administration and treatment in a surgical orthotopic pancreatic cancer murine model.
Co-reporter:George Mattheolabakis;Dandan Ling;Gulzar Ahmad;Mansoor Amiji
Pharmaceutical Research 2016 Volume 33( Issue 12) pp:2943-2953
Publication Date(Web):2016 December
DOI:10.1007/s11095-016-2016-z
Cisplatin, is recognized as a first line therapeutic for the treatment of non-small cell lung cancer (NSCLC). Cisplatin resistance is identified as the most detrimental complication during treatment and has been associated with upregulation of several genes, such as the anti-apoptotic gene survivin. In this study, we have evaluated the cytotoxic activity of lipid (C6 and C8)-modified platinum compounds in combination with a survivin-silencing siRNA against cisplatin resistant tumors.We synthesized and characterized several lipid-modified platinum compounds and evaluated their cytotoxic activity alone or in combination with survivin-silencing siRNA in vitro and in vivo against A549DDP cells and in vivo in tumor xenograft model.The lipid-modified compounds exhibited significantly stronger cytotoxic activity in vitro compared to cisplatin, with CDDP-C6 and CDDP-C8 producing the most pronounced effect, in both A549 and A549DDP cells. Pre-treatment of the A549DDP cells with survivin-silencing siRNA enhanced the cytotoxic activity of these compounds. In vivo, the co-treatment of the survivin-silencing siRNA and CDDP-C8 produced the strongest tumor growth inhibition effect (64.5%, p < 0.05) on a cancer mouse model of chemoresistant lung cancer. In contrast, cisplatin treatment exhibited no significant tumor growth inhibition (4.5%, no p).Co-treatment of lipid-modified compounds and survivin-silencing siRNA can constitute a reliable alternative to cisplatin treatment for cisplatin-resistant lung tumors that merit further evaluation.
Co-reporter:Lara Milane, Malav Trivedi, Amit Singh, Meghna Talekar, Mansoor Amiji
Journal of Controlled Release 2015 Volume 207() pp:40-58
Publication Date(Web):10 June 2015
DOI:10.1016/j.jconrel.2015.03.036
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Co-reporter:Sunita Yadav; Florence Gattacceca; Riccardo Panicucci
Molecular Pharmaceutics 2015 Volume 12(Issue 5) pp:1523-1533
Publication Date(Web):March 18, 2015
DOI:10.1021/mp5008376
The main objective of this study was to evaluate comparative biodistribution and pharmacokinetics of cyclosporine-A (CsA) following intranasal (IN) administration versus intravenous (IV) administration in Sprague–Dawley rats using an oil-in-water nanoemulsion delivery system. CsA, a hydrophobic peptide that is also a substrate for P-glycoprotein, is a well-known immunosuppressive agent. In the brain, CsA has been shown to be a potent anti-inflammatory and neuroprotective agent. CsA nanoemulsions (CsA-NE) and solution formulations (CsA-S) were prepared using an ultrasonication method and were characterized for drug content, encapsulation efficiency, globule size, and zeta potential. We compared the uptake of CsA-NE and CsA-S in brain regions and peripheral organs following IN and IV administration using LC-MS/MS based bioanalytical method. CsA-NE IN resulted in the highest accumulation compared to that with any other treatment and route of administration; this was consistent for all three regions of brain that were evaluated (olfactory bulbs, mid brain, and hind brain). The brain/blood exposure ratios of 4.49, 0.01, 0.33, and 0.03 for CsA-NE (IN), CsA-NE (IV), CsA-S (IN), and CsA-S (IV), respectively, indicated that CsA-NE is capable of direct nose-to-brain transport, bypassing the blood–brain barrier. Furthermore, CsA-NE administration reduces nontarget organ exposure. These studies show that IN delivery of CsA-NE is an effective way of brain targeting compared to that of other treatment strategies. This approach not only enhances the brain concentration of the peptide but also significantly limits peripheral exposure and the potential for off-target toxicity.
Co-reporter:Ana Vanessa Nascimento; Amit Singh; Hassan Bousbaa; Domingos Ferreira; Bruno Sarmento
Molecular Pharmaceutics 2015 Volume 12(Issue 12) pp:4466-4477
Publication Date(Web):November 2, 2015
DOI:10.1021/acs.molpharmaceut.5b00642
Development of efficient and versatile drug delivery platforms to overcome the physical and biological challenges in cancer therapeutics is an area of great interest, and novel materials are actively sought for such applications. Recent strides in polymer science have led to a combinatorial approach for generating a library of materials with different functional identities that can be “mixed and matched” to attain desired characteristics of a delivery vector. We have applied the combinatorial design to chitosan (CS), where the polymer backbone has been modified with polyethylene glycol, epidermal growth factor receptor-binding peptide, and lipid derivatives of varying chain length to encapsulate hydrophobic drugs. Cisplatin, cis-([PtCl2(NH3)2]), is one of the most potent chemotherapy drugs broadly administered for cancer treatment. Cisplatin is a hydrophilic drug, and in order for it to be encapsulated in the developed nanosystems, it was modified with lipids of varying chain length. The library of four CS derivatives and six platinum derivatives was self-assembled in aqueous medium and evaluated for physicochemical characteristics and cytotoxic effects in platinum-sensitive and -resistant lung cancer cells. The results show that the lipid-modified platinate encapsulation into CS nanoparticles significantly improved cellular cytotoxicity of the drug. In this work, we have also reinforced the idea that CS is a multifaceted system that can be as successful in delivering small molecules as it has been as a nucleic acids carrier.
Co-reporter:Amit Singh, Meghna Talekar, Thanh-Huyen Tran, Abishek Samanta, Ravi Sundaram and Mansoor Amiji
Journal of Materials Chemistry A 2014 vol. 2(Issue 46) pp:8069-8084
Publication Date(Web):29 Aug 2014
DOI:10.1039/C4TB01083C
There have been significant advances in our understanding of cancer as a disease at the molecular level. Combined with improved diagnostic systems, the concept of personalized medicine was introduced where therapy for every patient can be customized according to their disease profile. The nanotechnology approach for formulation design and the advent of drug delivery systems for small molecules and biologics has contributed to the development of personalized medicine. Despite the progress, effective management and treatment of cancer remains a clinical challenge. The majority of drug delivery vectors that have undergone clinical trials have been discontinued prematurely because of poor therapeutic outcomes, off-target effects and non-specific toxicity due to the components of the formulation itself. Therefore, there is an urgent unmet requirement for a systematic approach to design drug delivery vectors that not only deliver the cargo to the desired site of action, but are also highly biocompatible and non-toxic. The past decade has seen the evolution of a combinatorial approach to drug delivery, a concept that has been classically successful in drug discovery research. In the present review, we summarize the wet-lab and in silico strategies to designing libraries of biocompatible delivery materials using combinatorial chemistry and support this strategy with pre-clinical success stories in cancer therapy.
Co-reporter:Ana Vanessa Nascimento, Amit Singh, Hassan Bousbaa, Domingos Ferreira, Bruno Sarmento, and Mansoor M. Amiji
Molecular Pharmaceutics 2014 Volume 11(Issue 10) pp:3515-3527
Publication Date(Web):September 11, 2014
DOI:10.1021/mp5002894
RNA interference has emerged as a powerful strategy in cancer therapy because it allows silencing of specific genes associated with tumor progression and resistance. Mad2 is an essential mitotic checkpoint component required for accurate chromosome segregation during mitosis, and its complete abolition leads to cell death. We have developed an epidermal growth factor receptor (EGFR)-targeted chitosan system for silencing the Mad2 gene as a strategy to efficiently induce cell death in EGFR overexpressing human A549 non-small cell lung cancer cells. Control and EGFR-targeted chitosan nanoparticles loaded with small interfering RNAs (siRNAs) against Mad2 were formulated and characterized for size, charge, morphology, and encapsulation efficiency. Qualitative and quantitative intracellular uptake studies by confocal imaging and flow cytometry, respectively, showed time-dependent enhanced and selective intracellular internalization of EGFR-targeted nanoparticles compared to nontargeted system. Targeted nanoparticles showed nearly complete depletion of Mad2 expression in A549 cells contrasting with the partial depletion in the nontargeted system. Accordingly, Mad2-silencing-induced apoptotic cell death was confirmed by cytotoxicity assay and flow cytometry. Our results demonstrate that EGFR-targeted chitosan loaded with Mad2 siRNAs is a potent delivery system for selective killing of cancer cells.Keywords: chitosan nanoparticles; epidermal growth factor receptor; Mad2 gene; non-small cell lung cancer; RNA interference; tumor targeting;
Co-reporter:Arun K. Iyer, Zhenfeng Duan, and Mansoor M. Amiji
Molecular Pharmaceutics 2014 Volume 11(Issue 8) pp:2511-2526
Publication Date(Web):March 24, 2014
DOI:10.1021/mp500024p
Development of intrinsic and acquired drug resistance in cancer is a significant clinical challenge for effective therapeutic outcomes. Multidrug resistance (MDR) in solid tumors is especially difficult to overcome due to the many different factors that influence clinically manifested refractory disease. Genetic profiling of MDR tumors can provide for more specific control through RNA interference (RNAi) therapy. However, there are multiple barriers to effective in vivo delivery of functional nucleic acid constructs, such as small interfering RNAs (siRNAs) and micro RNAs (miRNAs or miRs). In this review, we have briefly described the principles and mechanisms based on the RNA interference phenomenon and the barriers to its successful clinical translation. The principles of active and passive tumor targeting using nanoparticles systems are also discussed. Furthermore, illustrative examples of miRNA, siRNA, and gene–drug combination delivery using nanoparticle systems that have shown promising potentials for the treatment of diseases such as MDR cancers are covered.Keywords: combination therapy; micro RNA; multidrug resistant tumors; multifunctional nanoparticles; small interfering RNA; tumor targeting;
Co-reporter:Lipa Shah;Florence Gattacceca
Pharmaceutical Research 2014 Volume 31( Issue 5) pp:1315-1324
Publication Date(Web):2014 May
DOI:10.1007/s11095-013-1252-8
Although neuro-active peptides are highly potent as central nervous system (CNS) therapeutics, their systemic delivery across the blood-brain barrier (BBB) is limited due to lack of permeability in the brain and rapid systemic metabolism. In this study, we aimed at enhancing the brain delivery and stability of chemically modified [D-Arg2, Lys4]-dermorphin-(1–4)-amide)] (DALDA) peptide to achieve prolonged analgesic effects.The C8-DALDA peptide analog was encapsulated in an oil-in-water nanoemulsion formulation made specifically with oils rich in omega-3 rich polyunsaturated fatty acid (PUFA) to enhance CNS availability. The nanoemulsion formulation was administered systemically in CD-1 mice and qualitative and quantitative biodistribution was evaluated. We have also examined the effect of curcumin, which is known to down-regulate efflux transporters and inhibit systemic metabolism, on the pharmacokinetic properties of the peptide.Qualitative and quantitative biodistribution and pharmacokinetic studies in mice clearly demonstrated improved plasma and brain exposure of modified DALDA when administered in nanoemulsion, thereby providing an exciting opportunity towards improved efficacy and/or lowered dose of the peptide. The various dosing regimens tested for modified DALDA solution and curcumin nanoemulsion directed towards a novel combination strategy for improved systemic delivery of peptides across the BBB.Encapsulation of the drug in PUFA nanoemulsion is an effective strategy for delivery of peptides. This work provides a novel combination strategy for improved delivery of peptides to the brain.
Co-reporter:Lipa Shah;Praveen Kulkarni;Craig Ferris
Pharmaceutical Research 2014 Volume 31( Issue 10) pp:2724-2734
Publication Date(Web):2014 October
DOI:10.1007/s11095-014-1370-y
The main objective of this study was to develop and evaluate therapeutic efficacy and safety following systemic delivery of a peptide analgesic into the CNS using an oil-in-water nanoemulsion system.We have formulated a safe and effective, omega-3 rich polyunsaturated fatty acid containing oil-in-water nanoemulsion formulation, for encapsulating and delivering chemically-modified DALDA, a potent mu-opioid peptide analogue, to the CNS. One of the challenges with CNS delivery is the lack of a non-invasive bioanalytical technique to confirm CNS uptake and therapeutic efficacy. Using blood oxygen-level dependent (BOLD) functional magenetic resonance imaging (fMRI), we provide quantitative evidence of nanoemulsion-based delivery and analgesic activity of DALDA analogue in capsaicin-induced awake rat model of pain.Nanoemulsion formulation effectively encapsulated the modified analgesic peptide and demonstrated efficacy in the capsaicin- pain induced functional magnetic resonance imaging model in rodents. Preliminary safety evaluations show that the nanoemulsion system was well tolerated and did not cause any acute negative effects.Overall, these results show tremendous opportunity for the development of modified peptide analgesic-encapsulated nanoemulsion formulations for CNS delivery and therapeutic efficacy.
Co-reporter:Jing Xu, Florence Gattacceca, and Mansoor Amiji
Molecular Pharmaceutics 2013 Volume 10(Issue 5) pp:2031-2044
Publication Date(Web):April 1, 2013
DOI:10.1021/mp400054e
The objective of this study was to evaluate qualitative and quantitative biodistribution of epidermal growth factor receptor (EGFR)-targeted thiolated type B gelatin nanoparticles in vivo in subcutaneous human pancreatic adenocarcinoma (Panc-1) bearing female SCID Beige mice. EGFR-targeted nanoparticles showed preferential and sustained accumulation in the tumor mass, especially at early time points. Higher blood concentrations and higher tumor accumulations were observed with PEG-modified and EGFR-targeted nanoparticles during the study (AUClast: 17.38 and 19.56%ID/mL·h in blood, 187 and 322%ID/g·h in tumor for PEG-modified and EGFR-targeted nanoparticles, respectively), as compared to control, unmodified particles (AUClast: 10.71%ID/mL·h in blood and 138%ID/g·h in tumor). EGFR-targeted nanoparticles displayed almost twice tumor targeting efficiency than either PEG-modified or the unmodified nanoparticles, highlighting the efficacy of the active targeting strategy. In conclusion, this study shows that EGFR-targeted and PEG-modified nanoparticles were suitable vehicles for specific systemic delivery in subcutaneous Panc-1 tumor xenograft models.Keywords: active tumor targeting; biodistribution; epidermal growth factor receptor (EGFR) targeting; long circulation time; passive tumor targeting; pharmacokinetics; poly(ethylene glycol); population analysis; targeting efficiency; thiolated type B gelatin nanoparticles; two compartment model;
Co-reporter:Shanthi Ganesh, Arun K. Iyer, David V. Morrissey, Mansoor M. Amiji
Biomaterials 2013 34(13) pp: 3489-3502
Publication Date(Web):
DOI:10.1016/j.biomaterials.2013.01.077
Co-reporter:Dipti Deshpande, David R. Janero, Mansoor Amiji
Nanomedicine: Nanotechnology, Biology and Medicine 2013 Volume 9(Issue 7) pp:885-894
Publication Date(Web):October 2013
DOI:10.1016/j.nano.2013.02.007
Delayed endothelial cell (EC) regeneration and the medial vascular smooth muscle cells (VSMCs) proliferation contribute to arterial restenosis. Although ω-3-polyunsaturated fatty acids (PUFAs), 17β-estradiol (17-βE) and C6-ceramide (CER) have shown therapeutic promise in addressing restenosis, extensive protein binding and lipophilicity complicate their (co-)delivery to cellular targets. We report engineering of an ω-3-PUFA-rich oil-in-water nanoemulsion formulation that effectively delivers 17-βE and CER cargo to cultured vascular cells. The cargo-free, ω-3-PUFA-rich nanoemulsion itself typically reduced growth factor-stimulated cellular proliferation, as did nanoemulsion-delivered CER alone, through enhanced pro-apoptotic caspase 3/7 activity. 17-βE loaded nanoemulsion inhibited VSMC proliferation and supported EC proliferation, responses associated with the mitogen-activated-protein-kinase (MAPK) signaling. Co-administration of 17-βE and CER loaded nanoemulsions exerted an anti-proliferative effect more pronounced on VSMCs than ECs. These therapeutically beneficial responses to ω-3-PUFA, CER, and/or 17-βE in our nanoemulsion formulation invite evaluation of this novel approach in animal models of restenosis and other occlusive vasculopathies.From the Clinical EditorThis team of investigators report the engineering of an ω-3-PUFA-rich oil-in-water nanoemulsion formulation that effectively delivers 17-βE and C6-ceramide cargo to cultured vascular cells in an effort to address vascular restenosis. Further preclinical studies will be needed in animal models before this approach could be considered for clinical trials.A novel flax-seed oil (ω-3 polyunsaturated fatty acid) containing oil in water nanoemulsion system was developed to encapsulate and deliver two hydrophobic molecules – C6-ceramide and 17β-estradiol to the vascular cells. With an average droplet size of less than 200 nm, the nanoemulsion system efficiently delivered the drug payload within the lysosomes of the vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and selectively inhibited the proliferation of the VSMCs. This selectivity towards VSMCs along with its nanosize and ω-3 polyunsaturated fatty acid content may prove beneficial as a multimodal approach for treatment of disorders like restenosis and atherosclerosis.
Co-reporter:Tatyana Chernenko;Fulden Buyukozturk
Drug Delivery and Translational Research 2013 Volume 3( Issue 6) pp:575-586
Publication Date(Web):2013 December
DOI:10.1007/s13346-013-0178-3
Active targeted delivery of nanoparticle-encapsulated agents to tumor cells in vivo is expected to enhance therapeutic effect with significantly less nonspecific toxicity. Active targeting is based on surface modification of nanoparticles with ligands that bind with extracellular targets and enhance payload delivery in the cells. In this study, we have used label-free Raman microspectral analysis and kinetic modeling to study cellular interactions and intracellular delivery of C6-ceramide using a nontargeted and an epidermal growth factor receptor (EGFR)-targeted biodegradable polymeric nano-delivery system, in EGFR-expressing human ovarian adenocarcinoma (SKOV3) cells. The results show that EGFR peptide-modified nanoparticles were rapidly internalized in SKOV3 cells leading to significant intracellular accumulation as compared to nonspecific uptake by the nontargeted nanoparticles. Raman microspectral analysis enables visualization and quantification of the carrier system, drug load, and responses of the biological systems interrogated, without exogenous staining and labeling procedures.
Co-reporter:Lipa Shah;Sunita Yadav;Mansoor Amiji
Drug Delivery and Translational Research 2013 Volume 3( Issue 4) pp:336-351
Publication Date(Web):2013 August
DOI:10.1007/s13346-013-0133-3
The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to disease-modifying effects. With change in population demographics, incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain.
Co-reporter:Husain Attarwala;Mansoor Amiji
Pharmaceutical Research 2012 Volume 29( Issue 6) pp:1637-1649
Publication Date(Web):2012 June
DOI:10.1007/s11095-012-0677-9
To develop a safe and effective non-viral vector for gene delivery and transfection in macrophages for potential anti-inflammatory therapy.Solid nanoparticles-in-emulsion (NiE) multi-compartmental delivery system was designed using plasmid DNA-encapsulated type B gelatin nanoparticles suspended in the inner aqueous phase of safflower oil-containing water-in-oil-in-water (W/O/W) multiple emulsion. Control and NiE formulations were evaluated for DNA delivery and transfection efficiency in J774A.1 adherent murine macrophages.Using green fluorescent protein (GFP) and murine interleukin-10 (mIL-10) expressing plasmid DNA constructs, the NiE formulation was found superior in enhancing intracellular delivery and gene transfection efficiency in cells. Anti-inflammatory effects of transfected mIL-10 were examined by suppression of tumor necrosis factor-alpha (TNFα) and interleukin 1-beta (IL-1β) production in lipopolysaccharide (LPS)-stimulated cells.Overall, the results were very encouraging towards development of a macrophage-specific NiE-based multi-compartmental gene delivery strategy that can potentially affect a number of acute and chronic inflammatory diseases.
Co-reporter:Mayurkumar Kalariya;Srinivas Ganta;Mansoor Amiji
Pharmaceutical Research 2012 Volume 29( Issue 12) pp:3393-3403
Publication Date(Web):2012 December
DOI:10.1007/s11095-012-0834-1
To develop a multi-compartmental vaccine delivery system for safe and efficient delivery of the gp100 peptide antigen in melanoma immunotherapy.Water-in-oil-in-water (W/O/W) multiple emulsion-based multi-compartmental vaccine delivery system containing the gp100 peptide was prepared by a two-step emulsification method. In vivo prophylactic and active immunization effectiveness of the novel squalane oil-containing gp100 vaccine was evaluated in the murine B16 melanoma model and compared with that of an incomplete Freund’s adjuvant (IFA)-based vaccine.Morphological evaluation of the W/O/W multiple emulsions showed that the oil-droplets were homogenously dispersed with the gp100 peptide encapsulated in an inner aqueous phase. Immunization with the gp100 peptide delivered in the W/O/W multiple emulsions-based vaccine resulted in increased protection against tumor challenge compared to IFA-based vaccine (p < 0.05, n = 8) signifying induction of enhanced anti-tumor immunity. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation and local infiltration of antigen specific cytotoxic T-lymphocytes into and/or surrounding the tumor mass. Moreover, the newly developed vaccine formulation did not induce any overt systemic toxicity.Novel W/O/W multiple emulsions-based vaccine efficiently delivers the gp100 peptide antigen to induce cell-mediated anti-tumor immunity and offers an alternate, safe vaccine delivery system.
Co-reporter:Shardool Jain and Mansoor Amiji
Biomacromolecules 2012 Volume 13(Issue 4) pp:
Publication Date(Web):March 2, 2012
DOI:10.1021/bm2017993
The main objective of this study was to evaluate macrophage-targeted alginate nanoparticles as a noncondensing gene delivery system for potential anti-inflammatory therapy. An external gelation method was employed to form plasmid DNA-encapsulated alginate nanoparticles. The nanoparticle surface was modified with a peptide sequence containing tuftsin (TKPR), and transfection efficiency was determined in J774A.1 macrophages. The effect of transfected mIL-10 in blocking expression of tumor necrosis factor-alpha (TNF-α) was evaluated in lipopolysaccharide (LPS)-stimulated cells. Scrambled peptide- and tuftsin-modified cross-linked alginate nanoparticles efficiently encapsulated plasmid DNA and protected against DNase I degradation. The transgene expression efficiencies, measured using GFP and mIL-10 expressing plasmid DNA, were highest with tuftsin-modified nanoparticles. Levels of TNF-α were significantly lower (p < 0.0001) in LPS-stimulated cells that were transfected with mIL-10 using alginate nanoparticles. The results of the study show that noncondensing alginate nanoparticles can efficiently deliver plasmid DNA, leading to sustained in vitro gene expression in macrophages.
Co-reporter:Sampath C. Abeylath, Srinivas Ganta, Arun K. Iyer, and Mansoor Amiji
Accounts of Chemical Research 2011 Volume 44(Issue 10) pp:1009
Publication Date(Web):July 15, 2011
DOI:10.1021/ar2000106
By definition, multifunctional nanosystems include several features within a single construct so that these devices can target tumors or other disease tissue, facilitate in vivo imaging, and deliver a therapeutic agent. Investigations of these nanosystems are rapidly progressing and provide new opportunities in the management of cancer. Tumor-targeted nanosystems are currently designed based primarily on the intrinsic physico-chemical properties of off-the-shelf polymers. Following fabrication, the surfaces of these nanoscale structures are functionalized for passive or active targeted delivery to the tumors.In this Account, we describe a novel approach for the construction of multifunctional polymeric nanosystems based on combinatorial design principles. Combinatorial approaches offer several advantages over conventional methods because they allow for the integration of multiple components with varied properties into a nanosystem via self-assembly or chemical conjugation. High-throughput synthesis and screening is required in polymer design because polymer composition directly affects properties including drug loading, retention in circulation, and targeting of the nanosystems.The first approach relies on the self-assembly of macromolecular building blocks with specific functionalities in aqueous media to yield a large variety of nanoparticle systems. These self-assembled nanosystems with diverse functionalities can then be rapidly screened in a high-throughput fashion for selection of ideal formulations, or hits, which are further evaluated for safety and efficacy. In another approach, a library of a large number of polymeric materials is synthesized using different monomers. Each of the formed polymers is screened for the selection of the best candidates for nanoparticle fabrication. The combinatorial design principles allow for the selection of those nanosystems with the most favorable properties based on the type of payload, route of administration, and the desired target for imaging and delivery.
Co-reporter:Christina Kriegel, Mansoor Amiji
Journal of Controlled Release 2011 Volume 150(Issue 1) pp:77-86
Publication Date(Web):28 February 2011
DOI:10.1016/j.jconrel.2010.10.002
The purpose of this study was to evaluate down-regulation of tumor necrosis factor (TNF)-α by oral RNA interference therapy. Control (scrambled sequence) or TNF-α specific small interfering RNA (siRNA) was encapsulated in type B gelatin nanoparticles and further entrapped in poly(epsilon-caprolactone) (PCL) microspheres to form a nanoparticles-in-microsphere oral system (NiMOS). Upon confirmation of the dextran sulfate sodium (DSS)-induced acute colitis model, mice were divided into several treatment groups receiving no treatment, blank NiMOS, NiMOS with scramble siRNA, or NiMOS with TNF-α silencing siRNA by oral administration. Successful gene silencing led to decreased colonic levels of TNF-α, suppressed expression of other pro-inflammatory cytokines (e.g., interleukin (IL)-1β, interferon (IFN)-γ) and chemokines (MCP-1), an increase in body weight, and reduced tissue myeloperoxidase activity. Results of this study established the clinical potential of a NiMOS-based oral TNF-α gene silencing system for the treatment of inflammatory bowel disease as demonstrated in an acute colitis model.
Co-reporter:Lara Milane, Zhenfeng Duan, and Mansoor Amiji
Molecular Pharmaceutics 2011 Volume 8(Issue 1) pp:185-203
Publication Date(Web):October 13, 2010
DOI:10.1021/mp1002653
Multi-drug resistant (MDR) cancer is a significant clinical obstacle and is often implicated in cases of recurrent, nonresponsive disease. Targeted nanoparticles were made by synthesizing a poly(d,l-lactide-co-glycolide)/poly(ethylene glycol)/epidermal growth factor receptor targeting peptide (PLGA/PEG/EGFR-peptide) construct for incorporation in poly(epsilon-caprolactone) (PCL) nanoparticles. MDR was induced in a panel of nine human breast and ovarian cancer cell lines using hypoxia. EGFR-targeted polymer blend nanoparticles were shown to actively target EGFR overexpressing cell lines, especially upon induction of hypoxia. The nanoparticles were capable of sustained drug release. Combination therapy with lonidamine and paclitaxel significantly improved the therapeutic index of both drugs. Treatment with a nanoparticle dose of 1 μM paclitaxel/10 μM lonidamine resulted in less than 10% cell viability for all hypoxic/MDR cell lines and less than 5% cell viability for all normoxic cell lines. Comparatively, treatment with 1 μM paclitaxel alone was the approximate IC50 value of the MDR cells while treatment with lonidamine alone had very little effect. The PLGA/PEG/EGFR-peptide delivery system actively targets a MDR cell by exploiting the expression of EGFR. This system treats MDR by inhibiting the Warburg effect and promoting mitochondrial binding of pro-apoptotic Bcl-2 proteins (lonidamine), while hyperstabilizing microtubules (paclitaxel). This nanocarrier system actively targets a MDR associated phenotype (EGFR receptor overexpression), further enhancing the therapeutic index of both drugs and potentiating the use of lonidamine/paclitaxel combination therapy in the treatment of MDR cancer.Keywords: drug delivery; hypoxia; lonidamine; Multi-drug resistant cancer; nanoparticle; paclitaxel; polymeric nanocarriers; Warburg effect;
Co-reporter:Sampath C. Abeylath, Mansoor M. Amiji
Bioorganic & Medicinal Chemistry 2011 Volume 19(Issue 21) pp:6167-6173
Publication Date(Web):1 November 2011
DOI:10.1016/j.bmc.2011.09.024
With the non-specific toxicity of anticancer drugs to healthy tissues upon systemic administration, formulations capable of enhanced selectivity in delivery to the tumor mass and cells are highly desirable. Based on the diversity of the drug payloads, we have investigated a combinatorial-designed strategy where the nano-sized formulations are tailored based on the physicochemical properties of the drug and the delivery needs. Individually functionalized C2 to C12 lipid-, thiol-, and poly(ethylene glycol) (PEG)-modified dextran derivatives were synthesized via ‘click’ chemistry from O-pentynyl dextran and relevant azides. These functionalized dextrans in combination with anticancer drugs form nanoparticles by self-assembling in aqueous medium having PEG surface functionalization and intermolecular disulfide bonds. Using anticancer drugs with log P values ranging from −0.5 to 3.0, the optimized nanoparticles formulations were evaluated for preliminary cellular delivery and cytotoxic effects in SKOV3 human ovarian adenocarcinoma cells. The results show that with the appropriate selection of lipid-modified dextran, one can effectively tailor the self-assembled nano-formulation for intended therapeutic payload.Schematic illustration for combinatorial approach in designing nanoparticle assemblies using C2 to C12 lipid-modified, thiol-modified, and poly(ethylene glycol) (PEG)-modified dextrans.
Co-reporter:Mansoor M. Amiji
Pharmaceutical Research 2011 Volume 28( Issue 2) pp:181-186
Publication Date(Web):2011 February
DOI:10.1007/s11095-010-0261-0
Co-reporter:Luis A. Brito;Saradha Chrasekhar;Steven R. Little
Journal of Biomedical Materials Research Part A 2010 Volume 93A( Issue 1) pp:325-336
Publication Date(Web):
DOI:10.1002/jbm.a.32488
Abstract
Gene-eluting stents can have profound impact in the treatment of coronary restenosis, especially when the encoded protein can re-endothelialize the arterial lumen. In this study, we have examined gene delivery in vitro and in vivo using poly(beta-amino ester) (PbAE) precondensed plasmid DNA-containing cationic liposomes or lipopolyplexes (LPP) immobilized on stainless steel meshes and stents using gelatin coatings. In vitro studies using LPP-immobilized on 50 mm round meshes using type A and B gelatin coatings showed that LPP were efficiently internalized in human aortic smooth muscle cells (SMC) over time, leading to green fluorescent protein (GFP) expression. Type B gelatin coating was found to be more effective in intracellular delivery and transgene expression efficiency and, as such, was used for stent coating. In vivo studies, carried out in iliac artery restenosis model in New Zealand white rabbits, also showed GFP expression in arterial tissues after 24 h of implantation. Based on these encouraging preliminary results, LPP-based formulations can serve as a safe and effective nonviral gene delivery system for effective treatment of coronary restenosis. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
Co-reporter:Srinivas Ganta;Harikrishna Devalapally ;Mansoor Amiji
Journal of Pharmaceutical Sciences 2010 Volume 99( Issue 11) pp:4630-4641
Publication Date(Web):
DOI:10.1002/jps.22157
Abstract
The aim of this study was to evaluate the effect of curcumin (CUR) in oral bioavailability and therapeutic efficacy of paclitaxel (PTX) administered in nanoemulsion to SKOV3 tumor-bearing nu/nu mice. Oral administration of the mice with CUR at 50 mg/kg for 3 consecutive days resulted in a down regulation of intestinal P-glycoprotein (Pgp) and cytochrome P450 3A2 (CYP3A2) protein levels. PTX, a Pgp and CYP3A2 substrate, was administered orally at 20 mg/kg in solution or nanoemulsion either as single agent or upon pretreatment with CUR at 50 mg/kg in tumor-bearing mice. Plasma AUC0–∞ of PTX administered in nanoemulsion to CUR pretreated mice showed 4.1-fold increase relative to controls. Similarly, relative PTX bioavailability was increased by 5.2-fold, resulting in a 3.2-fold higher PTX accumulation in the tumor tissue. PTX administered in nanoemulsion to CUR pretreated mice also showed significantly enhanced anti-tumor activity. Preliminary safety evaluation showed that CUR + PTX combination did not induce any acute toxicity as measured by body weight changes, blood cell counts, liver enzyme levels, and liver histopathology. The results of this study suggest that combination of PTX and CUR, administered in nanoemulsions, could improve oral bioavailability and therapeutic efficacy in ovarian adenocarcinoma. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4630–4641, 2010
Co-reporter:Lilian E. van Vlerken;Zhenfeng Duan;Steven R. Little
The AAPS Journal 2010 Volume 12( Issue 2) pp:171-180
Publication Date(Web):2010 June
DOI:10.1208/s12248-010-9174-4
The development of multidrug resistance (MDR) is a major hindrance to cancer eradication as it renders tumors unresponsive to most chemotherapeutic treatments and is associated with cancer resurgence. This study describes a novel mechanism to overcome MDR through a polymer-blend nanoparticle platform that delivers a combination therapy of C6-ceramide (CER), a synthetic analog of an endogenously occurring apoptotic modulator, together with the chemotherapeutic drug paclitaxel (PTX), in a single formulation. The PTX/CER combination therapy circumvents another cellular mechanism whereby MDR develops, by lowering the threshold for apoptotic signaling. In vivo studies in a resistant subcutaneous SKOV3 human ovarian and in an orthotopic MCF7 human breast adenocarcinoma xenograft showed that the PTX and CER nanoparticle combination therapy reduced the final tumor volume at least twofold over treatment with the standard PTX therapy alone. The study also revealed that the cotherapy accomplished this enhanced efficacy by generating an enhancement in apoptotic signaling in both tumor types. Additionally, acute evaluation of safety with the combination therapy did not show significant changes in body weight, white blood cell counts, or liver enzyme levels. The temporal-controlled nanoparticle delivery system presented in this study allows for a simultaneous delivery of PTX + CER in breast and ovarian tumor model drug, leading to a modulation of the apoptotic threshold. This strategy has tremendous potential for effective treatment of refractory disease in cancer patients.
Co-reporter:Srinivas Ganta and Mansoor Amiji
Molecular Pharmaceutics 2009 Volume 6(Issue 3) pp:928-939
Publication Date(Web):March 11, 2009
DOI:10.1021/mp800240j
Development of multidrug resistance (MDR) against a variety of conventional and novel chemotherapeutic agents is a significant challenge in effective cancer therapy. Over the last several years, we have focused on a multimodal therapeutic strategy to overcome tumor MDR by enhancing the delivery efficiency to the tumor mass and lowering the apoptotic threshold by modulation of the intracellular signaling mechanisms. In this study, we have examined augmentation of therapeutic efficacy upon coadministration of paclitaxel (PTX) and curcumin (CUR), an inhibitor of nuclear factor kappa B (NFκB) as well as a potent down-regulator of ABC transporters, in wild-type SKOV3 and drug resistant SKOV3TR human ovarian adenocarcinoma cells. PTX and CUR were encapsulated in flaxseed oil containing nanoemulsion formulations. The results showed that the encapsulated drugs were effectively delivered intracellular in both SKOV3 and SKOV3TR cells. CUR administration was shown to inhibit NFκB activity and down regulate P-glycoprotein expression in resistant cells. Combination PTX and CUR therapy, especially when administered in the nanoemulsion formulations, was very effective in enhancing the cytotoxicity in wild-type and resistant cells by promoting the apoptotic response. Overall, this cotherapy strategy has significant promise in the clinical management of refractory diseases, especially in ovarian cancer.Keywords: combination therapy; curcumin; Multidrug resistance; nanoemulsions; paclitaxel; SKOV3 ovarian adenocarcinoma cells;
Co-reporter:Sunita Yadav;Lilian E. van Vlerken;Steven R. Little;Mansoor M. Amiji
Cancer Chemotherapy and Pharmacology 2009 Volume 63( Issue 4) pp:711-722
Publication Date(Web):2009/03/01
DOI:10.1007/s00280-008-0790-y
In this study, the effect of MDR-1 gene silencing, using small interfering RNA (siRNA), and paclitaxel (PTX) co-therapy in overcoming tumor multidrug resistance was examined. Poly(ethylene oxide)-modified poly(beta-amino ester) (PEO-PbAE) and PEO-modified poly(epsilon-caprolactone) (PEO-PCL) nanoparticles were formulated to efficiently encapsulate MDR-1 silencing siRNA and PTX, respectively. Upon administration in multidrug resistant SKOV3TR human ovarian adenocarcinoma cells, siRNA-mediated MDR-1 gene silencing was evident at 100 nM dose. Combination of MDR-1 gene silencing and nanoparticle-mediated delivery significantly influenced the cytotoxic activity of PTX in SKOV3TR cells similar to what was observed in drug sensitive SKOV3 cells. We speculate that the enhancement in cytotoxicity was due to an increase in intracellular drug accumulation upon MDR-1 gene silencing leading to an apoptotic cell-kill effect. Taken together, these preliminary results are highly encouraging for the development of combination nano-therapeutic strategies that combine gene silencing and drug delivery to provide more potent therapeutic effect, especially in refractory tumors.
Co-reporter:Tatyana Chernenko, Christian Matthäus, Lara Milane, Luis Quintero, Mansoor Amiji and Max Diem
ACS Nano 2009 Volume 3(Issue 11) pp:3552
Publication Date(Web):October 28, 2009
DOI:10.1021/nn9010973
Novel optical imaging methods, such as Raman microspectroscopy, have been gaining recognition in their ability to obtain noninvasively the distribution of biochemical components of a sample. Raman spectroscopy in combination with optical microscopy provides a label-free method to assess and image cellular processes, without the use of extrinsic fluorescent dyes. The submicrometer resolution of the confocal Raman instrumentation allows us to image cellular organelles on the scale of conventional microscopy. We used the technique to monitor subcellular degradation patterns of two biodegradable nanocarrier systems—poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA). Our results suggest that both drug-delivery systems eventually are incorporated into Golgi-associated vesicles of late endosomes. These processes were monitored via the decrease of the molecule-characteristic peaks of PCL and PLGA. As the catabolic pathways proceed, shifts and variations in peak intensities and intensity ratios in the rendered Raman spectra unequivocally delineate their degradation patterns.Keywords: biodegradable nanoparticles; cells; drug delivery systems; Raman imaging
Co-reporter:Lara Jabr-Milane, Lilian van Vlerken, Harikrishna Devalapally, Dinesh Shenoy, Sushma Komareddy, Mayank Bhavsar, Mansoor Amiji
Journal of Controlled Release 2008 Volume 130(Issue 2) pp:121-128
Publication Date(Web):10 September 2008
DOI:10.1016/j.jconrel.2008.04.016
In this review article, we describe the different nano-platforms developed in our laboratory at Northeastern University in Boston, MA for the targeted delivery of drugs and genes. Special emphasis is placed on nano-platforms that offer opportunities for multi-functionalization to allow for targeted stimuli-responsive and/or simultaneous strategic delivery of multiple drugs, genes, as well as the combination of therapeutic systems with image contrast enhancers. Polymeric and lipid-based nanocarriers can provide versatile platforms for the delivery of multiple pharmacological agents, specifically to enhance therapeutic effect and overcome drug resistance in cancer. In addition, polymeric nanoparticles and nanoparticles-in-microsphere oral system (NiMOS) are useful for systemic and oral gene therapy, respectively.
Co-reporter:Srinivas Ganta, Harikrishna Devalapally, Aliasgar Shahiwala, Mansoor Amiji
Journal of Controlled Release 2008 Volume 126(Issue 3) pp:187-204
Publication Date(Web):20 March 2008
DOI:10.1016/j.jconrel.2007.12.017
Nanotechnology has shown tremendous promise in target-specific delivery of drugs and genes in the body. Although passive and active targeted-drug delivery has addressed a number of important issues, additional properties that can be included in nanocarrier systems to enhance the bioavailability of drugs at the disease site, and especially upon cellular internalization, are very important. A nanocarrier system incorporated with stimuli-responsive property (e.g., pH, temperature, or redox potential), for instance, would be amenable to address some of the systemic and intracellular delivery barriers. In this review, we discuss the role of stimuli-responsive nanocarrier systems for drug and gene delivery. The advancement in material science has led to design of a variety of materials, which are used for development of nanocarrier systems that can respond to biological stimuli. Temperature, pH, and hypoxia are examples of “triggers” at the diseased site that could be exploited with stimuli-responsive nanocarriers. With greater understanding of the difference between normal and pathological tissues and cells and parallel developments in material design, there is a highly promising role of stimuli-responsive nanocarriers for drug and gene delivery in the future.
Co-reporter:Lilian E. van Vlerken, Zhenfeng Duan, Steven R. Little, Michael V. Seiden and Mansoor M. Amiji
Molecular Pharmaceutics 2008 Volume 5(Issue 4) pp:516-526
Publication Date(Web):July 11, 2008
DOI:10.1021/mp800030k
In this study, we have investigated the biodistribution and pharmacokinetic analysis of paclitaxel (PTX) and the apoptotic signaling molecule, C6-ceramide (CER), when administered in a multifunctional polymer-blend nanoparticle formulation to female nude mice bearing an orthotopic drug sensitive MCF7 and multidrug resistant MCF7TR (MDR-1 positive) human breast adenocarcinoma. A polymer-blend nanoparticle system was engineered to incorporate temporally controlled sequential release of the combination drug payload. Hereby, PTX was encapsulated in the pH-responsive rapid releasing polymer, poly(beta-amino ester) (PbAE), while CER was present in the slow releasing polymer, poly(d,l-lactide-co-glycolide) (PLGA) within these blend nanoparticles. When particle formulations were administered intravenously to MCF7 and MCF7TR tumor bearing mice, higher concentrations of PTX were found in the blood due to longer retention time and an enhanced tumor accumulation relative to administration of free drug. In addition, the PLGA/PbAE blend nanoparticles were effective in enhancing the residence time of both drugs at the tumor site by reducing systemic clearance. Overall, these results are highly encouraging for development of multifunctional polymer-blend nanoparticle formulations that can be used for temporal-controlled administration of two drugs from a single formulation.Keywords: biodistribution; ceramide; Multidrug resistant tumors; noncompartmental pharmacokinetics; paclitaxel; polymer-blend nanoparticles;
Co-reporter:Ankita Desai;Tushar Vyas ;Mansoor Amiji
Journal of Pharmaceutical Sciences 2008 Volume 97( Issue 7) pp:2745-2756
Publication Date(Web):
DOI:10.1002/jps.21182
Abstract
The objective of this study was to examine augmentation of therapeutic activity in human glioblastoma cells with combination of paclitaxel (PTX) and the apoptotic signaling molecule, C6-ceramide (CER), when administered in novel oil-in-water nanoemulsions. The nanoemulsions were formulated with pine-nut oil, which has high concentrations of essential polyunsaturated fatty acid (PUFA). Drug-containing nanoemulsions were characterized for particle size, surface charge, and the particle morphology was examined with transmission electron microscopy (TEM). Epi-fluorescent microscopy was used to analyze nanoemulsion-encapsulated rhodamine-labeled PTX and NBD-labeled CER uptake and distribution in U-118 human glioblastoma cells. Cell viability was assessed with the MTS (formazan) assay, while apoptotic activity of PTX and CER was evaluated with caspase-3/7 activation and flow cytometry. Nanoemulsion formulations with the oil droplet size of approximately 200 nm in diameter were prepared with PTX, CER, and combination of the two agents. When administered to U-118 cells, significant enhancement in cytotoxicity was observed with combination of PTX and CER as compared to administration of individual agents. The increase in cytotoxicity correlated with enhancement in apoptotic activity in cells treated with combination of PTX and CER. The results of these studies show that oil-in-water nanoemulsions can be designed with combination therapy for enhancement of cytotoxic effect in brain tumor cells. In addition, PTX and CER can be used together to augment therapeutic activity, especially in aggressive tumor models such as glioblastoma. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:2745–2756, 2008
Co-reporter:M D Bhavsar and M M Amiji
Gene Therapy 2008 15(17) pp:1200-1209
Publication Date(Web):April 17, 2008
DOI:10.1038/gt.2008.67
The objective of this study was to examine the potential of oral interleukin-10 (IL-10) gene therapy for the treatment of inflammatory bowel disease (IBD). Nanoparticles-in-microsphere oral system (NiMOS) was formulated with murine IL-10-expressing plasmid DNA in type-B gelatin nanoparticles, which were further encapsulated in poly(epsilon-caprolactone) microsphere matrix. Upon oral administration in an acute colitis model, IL-10 expression in the large intestine was measured by quantitative real-time PCR and ELISA. The locally expressed IL-10 was able to suppress the levels of proinflammatory cytokines, such as IFN-γ, TNF-α, IL-1α, IL-1β and IL-12, as well as certain chemokines. The therapeutic benefits of transfected IL-10 were further demonstrated by an increase in body weight, favorable clinical activity score, restoration in colon length and weight, and suppression of inflammatory response as assessed by tissue histological analysis and myeloperoxidase activity. The results of this study provide highly encouraging evidence of oral gene delivery and transfection and potential utility in IBD therapy.
Co-reporter:Luis Brito, Steven Little, Robert Langer and Mansoor Amiji
Biomacromolecules 2008 Volume 9(Issue 4) pp:
Publication Date(Web):February 29, 2008
DOI:10.1021/bm7011373
Safe and effective nonviral gene delivery and transfection in primary human vascular endothelial cells (EC) and smooth muscle cells (SMC) has tremendous potential for cardiovascular diseases such as in the treatment of coronary restenosis. Using a combination of a cationic biodegradable polymer, poly(β-amino ester) (PBAE), and a cationic phospholipid, 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), we have engineered a lipopolyplex nanovector system that can transfect EC and SMC cells with reasonably high efficiency. For instance, upon addition of 1.0 µg DNA complexed in lipopolyplexes the transfection efficiency in SMC was 20% and in EC was 33%. The results of this study shows that PBAE−DOTAP−plasmid DNA lipopolyplexes are a promising nonviral vector system for gene delivery and transfection in EC and SMC.
Co-reporter:Padmaja Magadala;Mansoor Amiji
The AAPS Journal 2008 Volume 10( Issue 4) pp:
Publication Date(Web):2008 December
DOI:10.1208/s12248-008-9065-0
Type B gelatin-based engineered nanocarrier systems (GENS) have been used over the last several years as a non-condensing systemic and oral DNA delivery system. In this study, we have modified the surface of GENS with epidermal growth factor receptor (EGFR)-targeting peptide for gene delivery and transfection in pancreatic cancer cell lines. GENS were prepared by the solvent displacement method and the EGFR-targeting peptide was grafted on the surface using a hetero-bifunctional poly(ethylene glycol) (PEG) spacer. Plasmid DNA, encoding for enhanced green fluorescent protein (GFP), was efficiently encapsulated and protected from degrading enzymes in the control and surface-modified GENS. Upon incubation with EGFR over-expressing Panc-1 human pancreatic adenocarcinoma cells, the peptide-modified nanoparticles were found to be internalized efficiently by receptor-mediated endocytosis. Both quantitative and qualitative transgene expression efficiencies were significantly enhanced when plasmid DNA was administered with EGFR-targeted GENS relative to the control-unmodified gelatin or PEG-modified gelatin nanoparticle systems. Based on these preliminary results, EGFR-targeted GENS show tremendous promise as a safe and effective gene delivery vector with the potential to treat pancreatic cancer.
Co-reporter:Mayank D. Bhavsar, Mansoor M. Amiji
Journal of Controlled Release 2007 Volume 119(Issue 3) pp:339-348
Publication Date(Web):22 June 2007
DOI:10.1016/j.jconrel.2007.03.006
The aim of this investigation was to develop and evaluate a novel nanoparticles-in-microsphere oral system (NiMOS) for gene delivery and transfection in specific regions of the gastrointestinal (GI) tract. Plasmid DNA, encoding either for β-galactosidase (CMV-βgal) or enhanced green fluorescent protein (EFGP-N1), was encapsulated in type B gelatin nanoparticles. NiMOS were prepared by further protecting the DNA-loaded nanoparticles in a poly(epsilon-caprolactone) (PCL) matrix to form microspheres of less than 5.0 μm in diameter. In order to evaluate the biodistribution following oral administration, radiolabeled (111In-labeled) gelatin nanoparticles and NiMOS were administered orally to fasted Wistar rats. The results of biodistribution studies showed that, while gelatin nanoparticles traversed through the GI tract fairly quickly with more than 85% of the administered dose per gram localizing in the large intestine within the first hour, NiMOS resided in the stomach and small intestine for relatively longer duration. Following oral administration of CMV-βgal or EFGP-N1 plasmid DNA at 100 μg dose in the control and test formulations, the qualitative results presented in this study provide the proof-of-concept for the transfection capability of NiMOS upon oral administration. After 5 days post-administration, we observed transgene expression in the small and large intestine of rats. Based on these preliminary results, NiMOS show significant potential as novel gene delivery vehicle for therapeutic and vaccination purposes.
Co-reporter:Sushma Kommareddy;Mansoor Amiji
Journal of Pharmaceutical Sciences 2007 Volume 96(Issue 2) pp:397-407
Publication Date(Web):30 OCT 2006
DOI:10.1002/jps.20813
The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150–250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300–350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. ©2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:397–407, 2007
Co-reporter:S Kommareddy and M Amiji
Cancer Gene Therapy 2007 14(5) pp:488-498
Publication Date(Web):March 16, 2007
DOI:10.1038/sj.cgt.7701041
This study examined the potential of engineered gelatin-based nanoparticulate vectors for systemic delivery of therapeutic genes to human solid tumor xenografts in vivo. Plasmid DNA encoding for the soluble form of the extracellular domain of vascular endothelial growth factor receptor-1 (VEGF-R1 or sFlt-1) was encapsulated in the control and poly(ethylene glycol) (PEG)-modified gelatin-based nanoparticles. When the plasmid DNA was delivered in PEG-modified thiolated gelatin nanoparticles, highest levels of sFlt-1 expression was observed in vitro in MDA-MB-435 human breast adenocarcinoma cell line. In addition, upon intravenous administration in female Nu/Nu mice bearing orthotopic MDA-MB-435 breast adenocarcinoma xenografts, efficient in vivo expression of sFlt-1 plasmid DNA was confirmed quantitatively by enzyme-linked immunosorbent assay and qualitatively by Western blot analysis. The expressed sFlt-1 was therapeutically active as shown by suppression of tumor growth and microvessel density measurements. The results of this study show that PEG-modified gelatin-based nanovectors can serve as a safe and effective systemically administered gene delivery vehicle for solid tumor.
Co-reporter:Harikrishna Devalapally;Ananthsrinivas Chakilam
Journal of Pharmaceutical Sciences 2007 Volume 96(Issue 10) pp:2547-2565
Publication Date(Web):9 AUG 2007
DOI:10.1002/jps.20875
A number of new molecular entities (NMEs) selected for full-scale development based on their safety and pharmacological data suffer from undesirable physicochemical and biopharmaceutical properties, which lead to poor pharmacokinetics and distribution after in vivo administration. An optimization of the preformulation studies to develop a dosage form with proper drug delivery system to achieve desirable pharmacokinetic and toxicological properties can aid in the accelerated development of these NMEs into therapies. Nanoparticulate drug delivery systems show a promising approach to obtain desirable druglike properties by altering the biopharmaceutics and pharmacokinetics properties of the molecule. Apart from the advantages of enhancing potential for systemic administration, nanoparticulate drug delivery systems can also be used for site-specific delivery, thus alleviating unwanted toxicity due to nonspecific distribution, improve patient compliance, and provide favorable clinical outcomes. This review summarizes some of the parameters and approaches that can be used to evaluate nanoparticulate drug delivery systems in early stages of formulation development. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 2547–2565, 2007
Co-reporter:Mansoor M. Amiji
Cellulose 2007 Volume 14( Issue 1) pp:3-14
Publication Date(Web):2007 February
DOI:10.1007/s10570-006-9070-3
Helicobacter pylori infection is currently known to be the cause of at least 75% of all peptic ulcers. Although triple therapy protocols used at present in the clinics have resulted in significant benefits to the patients, the ultimate 100% eradication efficiency has never been achieved. In addition, the development of multidrug resistance to standard anti-microbial therapy can seriously hinder effective management of the disease. A rational approach to treat H. pylori, which localizes predominantly in the antral region of the stomach, is necessary for complete eradication of the infection. In this article, I review the summary of our work over the last several years on development of stomach-specific anti-H. pylori therapy using bioadhesive chitosan microspheres. To determine the gastric residence and local tetracycline concentrations as a function of time, tetracycline-containing chitosan microspheres were formulated and evaluated using the fasted Mongolian gerbil model. The H. pylori-infected gerbil model was used to evaluate the efficacy of the tetracycline-containing chitosan microsphere formulation. These preliminary results show great promise for this delivery strategy in the treatment of localized gastro-intestinal tract infections. Drug carrier systems can be engineered with the appropriate therapeutic agent(s) for efficient delivery to the target site and provide better control over localized infectious diseases. This strategy will ultimately lead to favorable clinical outcomes with less potential for resistance development.
Co-reporter:Lilian E. van Vlerken;Tushar K. Vyas
Pharmaceutical Research 2007 Volume 24( Issue 8) pp:1405-1414
Publication Date(Web):2007 August
DOI:10.1007/s11095-007-9284-6
The success of anti-cancer therapies largely depends on the ability of the therapeutics to reach their designated cellular and intracellular target sites, while minimizing accumulation and action at non-specific sites. Surface modification of nanoparticulate carriers with poly(ethylene glycol) (PEG)/poly(ethylene oxide) (PEO) has emerged as a strategy to enhance solubility of hydrophobic drugs, prolong circulation time, minimize non-specific uptake, and allow for specific tumor-targeting through the enhanced permeability and retention effect. Furthermore, PEG/PEO modification has emerged as a platform for incorporation of active targeting ligands, thereby providing the drug and gene carriers with specific tumor-targeting properties through a flexible tether. This review focuses on the recent developments surrounding such PEG/PEO-surface modification of polymeric nanocarriers to promote tumor-targeting capabilities, thereby enhancing efficacy of anti-cancer therapeutic strategies.
Co-reporter:Robert Langer;Mansoor Amiji;Dinesh Shenoy;Steven Little;Harikrishna Devalapally
Cancer Chemotherapy and Pharmacology 2007 Volume 59( Issue 4) pp:477-484
Publication Date(Web):2007/03/01
DOI:10.1007/s00280-006-0287-5
The objective of this study was to evaluate the anti-tumor efficacy and lack of systemic toxicity of paclitaxel when administered in pH-sensitive poly(ethylene oxide) (PEO)-modified poly(beta-amino ester) (PbAE) nanoparticles in mice bearing human ovarian adenocarcinoma (SKOV-3) xenograft.Paclitaxel-encapsulated PEO-modified PbAE (PEO–PbAE) nanoparticles were prepared by the solvent displacement method. PEO-modified poly(epsilon-caprolactone) (PCL) (PEO–PCL) nanoparticles were used as a non pH-responsive control formulation. Efficacy studies were conducted in SKOV-3 tumor-bearing athymic (Nu/Nu) mice at an equivalent paclitaxel dose of 20 mg/kg with the control and nanoparticle formulations. Safety of the drug when administered in the control and nanoparticle formulation was determined from blood cell counts and changes in body weight of the animals.The formulated paclitaxel-containing PEO–PbAE and PEO–PCL nanoparticles had a particle size in the range of 100–200 nm and a surface charge of + 39.0 and − 30.8 mV, respectively. After intravenous administration of paclitaxel in these formulations, the tumor growth was inhibited significantly. Both of the formulated nanoparticles tested have shown improved therapeutic efficacy as compared to the paclitaxel aqueous solution. Additionally, significantly lower toxicity profile of paclitaxel was observed with PEO-modified nanoparticles as compared to the aqueous solution formulationPEO-modified PbAE nanoparticles are a unique pH-sensitive drug delivery system that elicits enhanced efficacy and safety profile in solid tumor therapy.
Co-reporter:Sushma Kommareddy, Mansoor Amiji
Nanomedicine: Nanotechnology, Biology and Medicine 2007 Volume 3(Issue 1) pp:32-42
Publication Date(Web):March 2007
DOI:10.1016/j.nano.2006.11.005
Poly(ethylene glycol) (PEG)–modified thiolated gelatin (PEG-SHGel) anoparticles were developed as a long-circulating passively targeted delivery system that responds to intracellular glutathione concentrations to enhance DNA delivery and transfection. Reporter plasmid expressing enhanced green fluorescent protein (EGFP-N1) was encapsulated in the nanoparticles. DNA-containing gelatin (Gel) and thiolated gelatin (SHGel) nanoparticles were found to have a size range of 220 to 250 nm, whereas surface modification with PEG resulted in particles with a slightly larger size range of 310 to 350 nm. PEG modification was confirmed by electron spectroscopy for chemical analysis (ESCA), where an increase in the ether peak intensities of the C1s spectra corresponds to the surface presence of ethylene oxide residues. In addition, the PEG-SHGel nanoparticles released encapsulate plasmid DNA in response to varying concentrations of glutathione (up to 5.0 mM GSH in phosphate-buffered saline, or PBS). The stability of the encapsulated DNA was confirmed by agarose gel electrophoresis. Finally, from the qualitative and quantitative results of in vitro transfection studies in murine fibroblast cells (NIH3T3), PEG-Gel and PEG-SHGel nanoparticles afforded the highest transfection efficiency of the reporter plasmid. The results of these studies show that PEG-modified thiolated gelatin nanoparticles could serve as a very efficient nanoparticulate vector for systemic DNA delivery to solid tumors where the cells are known to have significantly higher intracellular GSH concentrations.
Co-reporter:Goldie Kaul;Mansoor Amiji
Journal of Pharmaceutical Sciences 2005 Volume 94(Issue 1) pp:184-198
Publication Date(Web):23 NOV 2004
DOI:10.1002/jps.20216
In order to develop a systemically administered safe and effective nonviral gene delivery system, cellular interactions and plasmid DNA transfection with poly(ethylene glycol)-modified (PEGylated) gelatin nanoparticles were examined. The DNA-containing nanoparticles were prepared by a controlled water-ethanol solvent displacement method. The nanoparticles were characterized for particle size, surface charge, and DNA loading, release, and stability. For cellular interaction studies, the control and PEGylated gelatin nanoparticles, complexed either with colloidal gold for transmission electron microscopy or loaded with rhodamine-dextran for fluorescence confocal microscopy, were incubated with NIH-3T3 fibroblast cells. At different time points, the location of the nanoparticles in the cellular environment was investigated. Furthermore, a reporter plasmid expressing the enhanced green fluorescent protein was encapsulated in the control gelatin and PEGylated gelatin nanoparticles for in vitro transfection studies. DNA-containing nanoparticles were prepared in the size range of 100–500 nm, with an average of 200 nm. PEGylated gelatin nanoparticles, with a slight negative surface charge, could stably and efficiently encapsulate plasmid DNA. Both transmission electron microscopy and confocal microscopy images showed that the gelatin and PEGylated gelatin nanoparticles rapidly entered the cell through nonspecific endocytosis followed by vesicular transport in the cytosol. Almost 100% of the administered gelatin and PEGylated gelatin nanoparticles were internalized in NIH-3T3 cells within the first 6 h of incubation. A large fraction of the administered nanoparticles was found to be concentrated in the perinuclear region of the cells after 12 h. Green fluorescent protein expression was observed after 12 h of nanoparticle incubation and remained stable for up to 96 h. Flow cytometry results showed that the DNA transfection efficiency with gelatin and PEGylated gelatin nanoparticles was 43% and 61%, respectively, after 96 h. The results of this study illustrate that PEGylated gelatin nanoparticles were rapidly internalized by the cells through nonspecific endocytosis and remained intact in the cytosol for up to 12 h. In addition, the DNA-encapsulated PEGylated gelatin nanoparticles were found to efficiently transfect cells in culture. © 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:184–198, 2005
Co-reporter:Anupama Potineni, David M Lynn, Robert Langer, Mansoor M Amiji
Journal of Controlled Release 2003 Volume 86(2–3) pp:223-234
Publication Date(Web):17 January 2003
DOI:10.1016/S0168-3659(02)00374-7
The main objective of this study was to develop and characterize a pH-sensitive biodegradable polymeric nanoparticulate system for tumor-selective paclitaxel delivery. A representative hydrophobic poly(β-amino ester) (poly-1) was synthesized by conjugate addition of 4,4′-trimethyldipiperidine with 1,4-butanediol diacrylate. Poly-1 (Mn 10,000 daltons) nanoparticles were prepared by the controlled solvent displacement method in an ethanol–water system in the presence of Pluronic® F-108, a poly(ethylene oxide) (PEO)-containing non-ionic surfactant. Control and PEO-modified nanoparticles were characterized by Coulter counter, scanning electron microscopy (SEM), zeta potential measurements, and electron spectroscopy for chemical analysis (ESCA). Polymer degradation studies were performed in phosphate-buffered saline (PBS, pH 7.4) at 37 °C. Paclitaxel loading capacities and efficiencies were determined and release studies were performed in Tween®-80 (0.1%, w/v)-containing PBS at 37 °C. Control and PEO-modified nanoparticles, labeled with rhodamine-123, were incubated with BT-20 cells to examine the uptake and cellular distribution as a function of time. PEO-modified nanoparticles with an average size of 100–150 nm and a positive surface charge of 37.0 mV were prepared. SEM analysis showed distinct smooth, spherical particles. The ether (–C–O–) peak of the C1s envelope in ESCA confirmed the surface presence of PEO chains. Polymer biodegradation studies showed that almost 85% of the starting material degraded after 6 days. The maximum paclitaxel loading efficiency attained was 97% at 1.0% (w/w) of the drug. Paclitaxel release studies showed that approximately 10% was released in the first 24 h, 80% after 3 days, and the entire content was released in approximately 5 days. After 1 h of incubation, a large fraction of the administered control and PEO-modified poly-1 nanoparticles was internalized in BT-20 cells. Results of this study demonstrate that PEO-modified poly-1 nanoparticles could provide increased therapeutic benefit by delivering the encapsulated drug to solid tumors.
Co-reporter:Meghna Talekar, Malav Trivedi, Parin Shah, Qijun Ouyang, ... Mansoor M Amiji
Molecular Therapy (April 2016) Volume 24(Issue 4) pp:759-769
Publication Date(Web):1 April 2016
DOI:10.1038/mt.2015.225
Mutations in KRAS and p53 signaling pathways contribute to loss of responsiveness to current therapies and a decreased survival in lung cancer. In this study, we have investigated the delivery and transfection of wild-type (wt-) p53 and microRNA-125b (miR-125b) expressing plasmid DNA, in SK-LU-1 human lung adenocarcinoma cells as well as in KrasG12D/p53fl/fl (KP) genetically engineered mouse model of lung cancer. Systemic plasmid DNA delivery with dual CD44/EGFR-targeted hyaluronic acid (HA)-based nanoparticles (NPs) resulted in a 2- to 20-fold increase in wt-p53 and miR-125b gene expression in SK-LU-1 cells. This resulted in enhanced apoptotic activity as seen with increased APAF-1 and caspase-3 gene expression. Similarly, in vivo evaluations in KP mouse model indicated successful CD44/EGFR-targeted delivery. Tumor growth inhibition and apoptotic induction were also observed with (wt-p53+miR125b) combination therapy in KP tumor model. Lastly, J774.A1 murine macrophages co-cultured with transfected SK-LU-1 cells showed a 14- to 35-fold increase in the iNOS-Arg-1 ratio, supportive of previous results demonstrating a role of miR-125b in macrophage repolarization. Overall, these results show tremendous promise of wt-p53 and miR-125b gene therapy using dual CD44/EGFR-targeting HA NP vector for effective treatment of lung cancer.
Co-reporter:Arun K. Iyer, Amit Singh, Srinivas Ganta, Mansoor M. Amiji
Advanced Drug Delivery Reviews (30 November 2013) Volume 65(Issues 13–14) pp:1784-1802
Publication Date(Web):30 November 2013
DOI:10.1016/j.addr.2013.07.012
Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed.Download high-res image (252KB)Download full-size image
Co-reporter:Alejandro Sosnik, Mansoor Amiji
Advanced Drug Delivery Reviews (18 March 2010) Volume 62(Issues 4–5) pp:375-377
Publication Date(Web):18 March 2010
DOI:10.1016/j.addr.2009.11.010
Co-reporter:Sandra Chadwick, Christina Kriegel, Mansoor Amiji
Advanced Drug Delivery Reviews (18 March 2010) Volume 62(Issues 4–5) pp:394-407
Publication Date(Web):18 March 2010
DOI:10.1016/j.addr.2009.11.012
The current prevalence of infectious diseases in many developing regions of the world is a serious burden, impacting both the general health as well as economic growth of these communities. Additionally, treatment with conventional medication becomes increasingly challenging due to emergence of new and drug resistant strains jeopardizing the progress made in recent years towards control and elimination of certain types of infectious diseases. Thus, from a public health perspective, prevention such as through immunization by vaccination, which has proven to be most effective, might be the best alternative to prevent and combat infectious diseases in these regions. To achieve this, development of wide-scale immunization programs become necessary including vaccines that can easily and widely be distributed, stored and administered. Mucosal vaccines offer great potential since they can be administered via oral or intranasal delivery route which does not require trained personnel, avoids the use of needles and improves overall patient compliance and acceptance. However, it necessitates the implementation of specific immunization strategies to improve their efficacy. Application of nanotechnology to design and create particle mediated delivery systems that can efficiently encapsulate vaccine components for protection of the sensitive payload, target the mucosal immune system and incorporate mucosal adjuvants maximizing immune response is key strategy to improve the effectiveness of mucosal vaccines.
Co-reporter:Christina Kriegel, Husain Attarwala, Mansoor Amiji
Advanced Drug Delivery Reviews (15 June 2013) Volume 65(Issue 6) pp:891-901
Publication Date(Web):15 June 2013
DOI:10.1016/j.addr.2012.11.003
Gene and RNA interference therapies have significant potential for alleviating countless diseases, including many associated with the gastro-intestinal (GI) tract. Unfortunately, oral delivery of genes and small interfering RNA (siRNA) is very challenging due to the extracellular and intracellular barriers. In this review, we discuss the utilization of multi-compartmental delivery systems for oral administration of nucleic acid therapies. Some of the illustrative examples of multi-compartmental systems include solid nanoparticles-in-microsphere, solid nanoparticles-in-emulsion, and liquid nanoparticles-in-emulsion. Using type B gelatin nanoparticles encapsulated in poly(ε-caprolactone) microspheres, we have prepared nanoparticles-in-microsphere oral system (NiMOS) for gene and siRNA delivery for the treatment of inflammatory bowel disease (IBD). The results of these studies show that the multi-compartmental formulations can overcome many of the barriers for effective oral gene and siRNA delivery.Download high-res image (178KB)Download full-size image
Co-reporter:Amit Singh, Meghna Talekar, Thanh-Huyen Tran, Abishek Samanta, Ravi Sundaram and Mansoor Amiji
Journal of Materials Chemistry A 2014 - vol. 2(Issue 46) pp:NaN8084-8084
Publication Date(Web):2014/08/29
DOI:10.1039/C4TB01083C
There have been significant advances in our understanding of cancer as a disease at the molecular level. Combined with improved diagnostic systems, the concept of personalized medicine was introduced where therapy for every patient can be customized according to their disease profile. The nanotechnology approach for formulation design and the advent of drug delivery systems for small molecules and biologics has contributed to the development of personalized medicine. Despite the progress, effective management and treatment of cancer remains a clinical challenge. The majority of drug delivery vectors that have undergone clinical trials have been discontinued prematurely because of poor therapeutic outcomes, off-target effects and non-specific toxicity due to the components of the formulation itself. Therefore, there is an urgent unmet requirement for a systematic approach to design drug delivery vectors that not only deliver the cargo to the desired site of action, but are also highly biocompatible and non-toxic. The past decade has seen the evolution of a combinatorial approach to drug delivery, a concept that has been classically successful in drug discovery research. In the present review, we summarize the wet-lab and in silico strategies to designing libraries of biocompatible delivery materials using combinatorial chemistry and support this strategy with pre-clinical success stories in cancer therapy.
Co-reporter:Shanthi Ganesh, Arun K Iyer, Jan Weiler, David V Morrissey, Mansoor M Amiji
Molecular Therapy - Nucleic Acids Volume 2() pp:
Publication Date(Web):1 January 2013
DOI:10.1038/mtna.2013.29
One of the most challenging aspects of lung cancer therapy is the rapid acquisition of multidrug-resistant (MDR) phenotype. One effective approach would be to identify and downregulate resistance-causing genes in tumors using small interfering RNAs (siRNAs) to increase the sensitivity of tumor cells to chemotherapeutic challenge. After identifying the overexpressed resistance-related antiapoptotic genes (survivin and bcl-2) in cisplatin-resistant cells, the siRNA sequences were designed and screened to select the most efficacious candidates. Modifications were introduced in them to minimize off-target effects. Subsequently, the combination of siRNA and cisplatin that gave the maximum synergy was identified in resistant cells. We then demonstrated that the combination treatment of the selected siRNAs and cisplatin encapsulated in CD44-targeting hyaluronic acid (HA)-based self-assembling nanosystems reversed the resistance to cisplatin and delayed the tumor growth significantly (growth inhibition increased from 30 to 60%) in cisplatin-resistant tumors. In addition, no abnormalities in body weights, liver enzyme levels or histopathology of liver/spleen tissues were observed in any of the treatment groups during the study period. Overall, we demonstrate that the combination of siRNA-mediated gene-silencing strategy with chemotherapeutic agents constitutes a valuable and safe approach for the treatment of MDR tumors.