Co-reporter:Zhaoyue Wang;Xuejing Bai;Xuena Guo
Journal of Industrial Microbiology & Biotechnology 2017 Volume 44( Issue 1) pp:129-139
Publication Date(Web):2017 January
DOI:10.1007/s10295-016-1852-5
2-Phenylethanol (2-PE) is widely used in food, perfume and pharmaceutical industry, but lower production in microbes and less known regulatory mechanisms of 2-PE make further study necessary. In this study, crucial genes like ARO8 and ARO10 of Ehrlich pathway for 2-PE synthesis and key transcription factor ARO80 in Saccharomyces cerevisiae were re-regulated using constitutive promoter; in the meantime, the effect of nitrogen source in synthetic complete (SC) medium with l-phenylalanine (l-Phe) on Aro8/Aro9 and Aro10 was investigated. The results showed that aromatic aminotransferase activities of ARO8 over-expressing strains were seriously inhibited by ammonia sulfate in SC + Phe medium. Flask fermentation test demonstrated that over-expressing ARO8 or ARO10 led to about 42 % increase in 2-PE production when compared with the control strain. Furthermore, influence of transcription factors Cat8 and Mig1 on 2-PE biosynthesis was explored. CAT8 over-expression or MIG1 deletion increased in the transcription of ARO9 and ARO10. 2-PE production of CAT8 over-expressing strain was 62 % higher than that of control strain. Deletion of MIG1 also led to 2-PE biosynthesis enhancement. The strain of CAT8 over-expression and MIG1 deletion was most effective in regulating expression of ARO9 and ARO10. Analysis of mRNA levels and enzyme activities indicates that transaminase in Ehrlich pathway is the crucial target of Nitrogen Catabolize Repression (NCR). Among the engineering strains, the higher 3.73 g/L 2-PE production in CAT8 over-expressing strain without in situ product recovery suggests that the robust strain has potentiality for commercial exploitation.
Co-reporter:Xianrui Chen, Zhaoyue Wang, Xuena Guo, Sha Liu, Xiuping He
Journal of Biotechnology 2017 Volume 242(Volume 242) pp:
Publication Date(Web):20 January 2017
DOI:10.1016/j.jbiotec.2016.11.028
•Gln3p and Gat1p promoted crucial genes of Ehrlich pathway to express and enhanced 2-phenylethanol production significantly.•High efficient expression of general amino acid permease Gap1p up-regulated 2-phenylethanol synthesis.•Gln3p(2) and Gln3p(58) respectively from diploid and haploid yeast showed different regulation on 2-PE synthesis.In Saccharomyces cerevisiae, when l-phenylalanine (l-Phe) is used as the sole nitrogen source, 2-phenylethanol (PE) is mainly synthesized via the Ehrlich pathway. General amino acid permease Gap1p is response of aromatic amino acids transportation, and GATA transcription factors Gln3p and Gat1p regulate the transcription of permease gene and catabolic enzyme genes for nitrogen sources and aromatic amino acids utilization. In this study, it was demonstrated that over-expressing GLN3 gene from industrial yeast strain MT2 or S. cerevisiae haploid strain YS58, 2-PE synthesis levels of recombinant strains increased 54% or 40% than that of the control strain, which suggested that higher Gln3p activity in yeast has positive regulation effect on 2-PE biosynthesis via Ehrlich pathway. The recombinant strains with over-expression of GAT1 gene from MT2 or YS58 also up-regulated Ehrlich pathway for 2-PE biosynthesis and increased 2-PE production. Similarly, when GAP1 gene respectively from MT2 or YS58 was over-expressed, 2-PE yield was improved obviously, suggesting that GAP1 over-expressing in yeast also promoted Ehrlich pathway to produce 2-PE. The synergistic regulation of GLN3/GAT1 or GLN3/GAP1 over-expression was similar to that of single factor over-expression. Among these regulatory factors, Gln3p of industrial yeast strain MT2 caused stronger regulation on target genes than that of haploid strain YS58, which might be due to the differences in translational efficiency or nuclear localization of each Gln3p, or due to their different spatial structures and binding domains. Further results showed that efficient Gln3p expression in MT2 brought about higher 2-PE, 3.59 gL−1, which was of potential significant for commercial exploitation.
Co-reporter:Panpan Song, Sha Liu, Xuena Guo, Xuejing Bai, Xiuping He, Borun Zhang
Analytical Biochemistry 2015 Volume 468() pp:66-74
Publication Date(Web):1 January 2015
DOI:10.1016/j.ab.2014.09.006
Abstract
With increasing application of Hansenula polymorpha in fundamental research and biotechnology, many more genetic manipulations are required. However, these have been restricted for the finiteness of selectable markers. Here, MazF, a toxin protein from Escherichia coli, was investigated as a counter-selectable marker in H. polymorpha. The lethal effect of MazF on yeast cells suggested that it is a candidate for counter-selection in H. polymorpha. Markerless or scarless gene deletion in H. polymorpha was conducted based on selectable markers cassette mazF-zeoR, in which the zeocin resistance cassette and mazF expression cassette were used as positive and counter-selectable markers, respectively. For markerless deletion, the target region can be replaced by CYC1TT via two-step homologous recombination. For scarless deletion, the innate upstream region (5′UP) of target genes rather than CYC1TT mediates homologous recombination to excise both selectable markers and 5′ sequence of target genes. Moreover, scarless deletion can be accomplished by using short homologous arms for the effectiveness of mazF as a counter-selectable marker. The applicability of the strategies in markerless or scarless deletion of PEP4, LEU2, and TRP1 indicates that this study provides easy, time-efficient, and host-independent protocols for single or multiple genetic manipulations in H. polymorpha.
Co-reporter:Zhaoyue Wang;Xuejing Bai
Journal of Industrial Microbiology & Biotechnology 2014 Volume 41( Issue 9) pp:1415-1424
Publication Date(Web):2014 September
DOI:10.1007/s10295-014-1481-9
Superoxide dismutase (SOD) is a significant antioxidant, but unlike glutathione (GSH), SOD cannot be secreted into beer by yeast cells during fermentation, this directly leads to the limited application of SOD in beer anti-aging. In this investigation, we constructed the SOD1 secretion cassette in which strong promoter PGK1p and the sequence of secreting signal factor from Saccharomyces cerevisiae were both harbored to the upstream of coding sequence of SOD1 gene, as a result, the obtained strains carrying this cassette successfully realized the secretion of SOD1. In order to overcome the limitation of previous genetic modification on yeast strains, one new comprehensive strategy was adopted targeting the suitable homologous sites by gene deletion and SOD1 + GSH1 co-overexpression, and the new strain ST31 (Δadh2::SOD1 + Δilv2::GSH1) was constructed. The results of the pilot-scale fermentation showed that the diacetyl content of ST31 was lower by 42 % than that of the host, and the acetaldehyde content decreased by 29 %, the GSH content in the fermenting liquor of ST31 increased by 29 % compared with the host. Both SOD activity test and the positive and negative staining assay after native PAGE indicated that the secreted active SOD in the fermenting liquor of ST31 was mainly a dimer with the size of 32,500 Da. The anti-aging indexes such as the thiobarbituric acid and the resistance staling value further proved that the flavor stability of the beer brewed with strain ST31 was not only better than that of the original strain, but also better than that of the previous engineering strains. The multi-modification and comprehensive improvement of the beer yeast strain would greatly enhance beer quality than ever, and the self-cloning strain would be attractive to the public due to its bio-safety.
Co-reporter:Ying Lu;Yan-Fei Cheng;Xiu-Ping He
Journal of Industrial Microbiology & Biotechnology 2012 Volume 39( Issue 1) pp:73-80
Publication Date(Web):2012 January
DOI:10.1007/s10295-011-1001-0
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.