Tingqiang Li

Find an error

Name:
Organization: Zhejiang University
Department: Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences
Title:
Co-reporter:Qi Tao;Dandi Hou;Xiaoe Yang
Plant and Soil 2016 Volume 398( Issue 1-2) pp:139-152
Publication Date(Web):2016 January
DOI:10.1007/s11104-015-2651-x
Organic acids play an important role in metal detoxification in plant, but accumulation of heavy metals with the help of organic acids secretion in hyperaccumulators has not been well documented. The aim of this study was to investigate the contribution of oxalate secretion to cadmium (Cd) hyperaccumulation in S. alfredii.Hydroponic experiments were conducted to investigate the characteristics of Cd-induced secretion of oxalate in terms of pattern, location and oxalate-induced Cd translocation pathway, using ion channel inhibitors, scanning ion-selective electrode technique (SIET) and fluorescence imaging.Hyperaccumulating ecotype (HE) had nearly 2-fold higher oxalate secretion than non-hyperaccumulating ecotype (NHE). Phenylglyoxal effectively blocked Cd-induced oxalate secretion and decreased Cd concentration in HE while exogenous oxalate supply promoted Cd accumulation efficiently. SIET analysis indicated that Cd2+ influx into roots of HE mainly occurred at zone 0–10 mm from root apex where oxalate secretion was localized. Cd was distributed preferentially to the root stele of the HE but not the NHE, and was significantly increased with the secreted oxalates in HE.Cd hyperaccumulation by HE S. alfredii is partially associated with oxalate secretion from the root apex, which mediates the loading of Cd from the xylem parenchyma cells.
Co-reporter:Kai Wang;Xin-xin Chen;Zhi-qiang Zhu
Environmental Science and Pollution Research 2014 Volume 21( Issue 2) pp:962-971
Publication Date(Web):2014 January
DOI:10.1007/s11356-013-1960-y
A microcosm experiment was conducted to investigate the dissipation of available benzo[a]pyrene (BaP) in soils co-contaminated with cadmium (Cd) and pyrene (PYR) during aging process. The available residue of BaP in soil was separated into desorbing and non-desorbing fractions. The desorbing fraction contributed more to the dissipation of available BaP than the non-desorbing fraction did. The concentration of bound-residue fraction of BaP was quite low across all treatments. Within the duration of this study (250 days), transformation of BaP from available fractions to bound-residue fraction was not observed. Microbial degradation was the dominant mechanism of the dissipation of available BaP in the soil. The dissipation of available BaP was significantly inhibited with the increment in Cd level in the soil. The addition of PYR (250 mg kg−1) remarkably promoted the dissipation of available BaP without reducing Cd availability in the soil. The calculated half-life of available BaP in the soil prolonged with the increment in Cd level; however, the addition of PYR shortened the half-life of available BaP by 13.1, 12.7, and 32.8 % in 0.44, 2.56, and 22 mg Cd kg−1 soils, respectively. These results demonstrated that the inhibiting effect of Cd and the promoting effect of PYR on the dissipation of available BaP were competitive. Therefore, this study shows that the bioremediation process of BaP can be more complicated in co-contaminated soils.
Co-reporter:Tingqiang Li;Qi Tao;Chengfeng Liang
Environmental Science and Pollution Research 2014 Volume 21( Issue 9) pp:5899-5908
Publication Date(Web):2014 May
DOI:10.1007/s11356-014-2560-1
The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l−1) or elevated (800 μl l−1) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn–DOM complexes were the dominant species in soil solutions, followed by free Cd2+ and Zn2+ species for both ecotypes. However, Cd/Zn–DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM–metal complexes in the rhizosphere of HE S. alfredii.
Co-reporter:Wendan Xiao, Xiaoe Yang, Zhenli He, M. T. Rafiq, Dandi Hou, and Tingqiang Li
Journal of Agricultural and Food Chemistry 2013 Volume 61(Issue 12) pp:2925-2932
Publication Date(Web):March 8, 2013
DOI:10.1021/jf400467s
Anthropogenic chromium (Cr) pollution in soils poses a great threat to human health through the food chain. It is imperative to understand Cr phytoavailability to rice (Oryza sativa L.), which is a major staple food crop for the largest population of people on Earth. This study was aimed to establish a model for evaluation of the phytoavailability of Cr to rice in six representative Chinese soils based on soil properties. Simple correlation analysis indicated that Cr concentration in polished rice was significantly correlated with total Cr, Mehlich-3 extractable Cr, and Cr(VI) in soil. Stepwise multiple regression analysis also demonstrated that the Cr phytoavailability was strongly correlated with soil total Cr, Mehlich-3 extractable Cr, Cr(VI) concentration, soil organic matter, Fe(II), and particle size distribution. Critical Cr concentrations in the six soils were evaluated for rice based on the maximum safe level for daily intake of Cr. Mehlich-3 extractable Cr are the most suitable Cr thresholds for Periudic Argosols, Udic Ferrisols, Mollisols, and Ustic Cambosols with values of 1.54, 0.56, 0.42, and 2.18 mg kg–1, respectively, while Cr(VI) are adequate thresholds for Calcaric Regosols and Stagnic Anthrosols with values of 0.68 and 0.84 mg kg–1, respectively.
Co-reporter:Chun-fa Liu;Cheng-xian Wu;Muhammad T. Rafiq
Journal of Zhejiang University-SCIENCE B 2013 Volume 14( Issue 12) pp:1144-1151
Publication Date(Web):2013 December
DOI:10.1631/jzus.B1300004
A pot culture experiment was carried out to investigate the accumulation properties of mercury (Hg) in rice grain and cabbage grown in seven soil types (Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols) spiked with different concentrations of Hg (CK, 0.25, 0.50, 1.00, 2.00, and 4.00 mg/kg). The results of this study showed that Hg accumulation of plants was significantly affected by soil types. Hg concentration in both rice grain and cabbage increased with soil Hg concentrations, but this increase differed among the seven soils. The stepwise multiple regression analysis showed that pH, Mn(II), particle size distribution, and cation exchange capacity have a close relationship with Hg accumulation in plants, which suggested that physicochemical characteristics of soils can affect the Hg accumulation in rice grain and cabbage. Critical Hg concentrations in seven soils were identified for rice grain and cabbage based on the maximum safe level for daily intake of Hg, dietary habits of the population, and Hg accumulation in plants grown in different soil types. Soil Hg limits for rice grain in Udic Ferrisols, Mollisol, Periudic Argosols, Latosol, Ustic Cambosols, Calcaric Regosols, and Stagnic Anthrosols were 1.10, 2.00, 2.60, 2.78, 1.53, 0.63, and 2.17 mg/kg, respectively, and critical soil Hg levels for cabbage are 0.27, 1.35, 1.80, 1.70, 0.69, 1.68, and 2.60 mg/kg, respectively.
Co-reporter:Huagang Huang;Kai Wang;Zhiqiang Zhu
Environmental Science and Pollution Research 2013 Volume 20( Issue 5) pp:2844-2853
Publication Date(Web):2013 May
DOI:10.1007/s11356-012-1175-7
While phytoextraction tools are increasingly applied to remediation of contaminated soils, strategies are needed to optimize plant uptake by improving soil conditions. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. Microcosm experiments were conducted in greenhouse to examine the effect of different phosphorus (P) sources on zinc (Zn) phytoextraction by Sedum alfredii in aged Zn-contaminated paddy soil. The Zn accumulation, soil pH, microbial biomass and enzyme activity, available Zn changes. and Zn phytoremediation efficiency in soil after plant harvest were determined. Upon addition of P, Zn uptake of S. alfredii significantly increased. Mehlich-3 extractable or the fractions of exchangeable and carbonate-bound soil Zn were significantly increased at higher P applications. Soil pH significantly decreased with increasing P application rates. Soil microbial biomass in the P-treated soils was significantly higher (P < 0.05) than those in the control. Shoot Zn concentration was positively correlated with Mehlich-3 extractable P (P < 0.0001) or exchangeable/carbonate-bound Zn (P < 0.001), but negatively related to soil pH (P < 0.0001). These results indicate that application of P fertilizers has the potential to enhance Zn mobility and uptake by hyperaccumulating plant S. alfredii, thus increasing phytoremediation efficiency of Zn-contaminated soils.
Co-reporter:Xuan Han;Cheng-feng Liang;Ting-qiang Li
Journal of Zhejiang University-SCIENCE B 2013 Volume 14( Issue 7) pp:640-649
Publication Date(Web):2013 July
DOI:10.1631/jzus.B1200353
The simultaneous sorption behavior and characteristics of cadmium (Cd) and sulfamethoxazole (SMX) on rice straw biochar were investigated. Isotherms of Cd and SMX were well modeled by the Langmuir equation (R2>0.95). The calculated maximum adsorption parameter (Q) of Cd was similar in single and binary systems (34 129.69 and 35 919.54 mg/kg, respectively). However, the Q of SMX in a binary system (9 182.74 mg/kg) was much higher than that in a single system (1 827.82 mg/kg). The presence of Cd significantly promoted the sorption of SMX on rice straw biochar. When the pH ranged from 3 to 7.5, the sorption of Cd had the characteristics of a parabola pattern with maximum adsorption at pH 5, while the adsorption quantity of SMX decreased with increasing pH, with maximum adsorption at pH 3. The amount of SMX adsorbed on biochar was positively correlated with the surface area of the biochar, and the maximum adsorption occurred with d 250 biochar (biochar with a diameter of 150–250 μm). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) showed that the removal of Cd and SMX by rice straw biochar may be attributed to precipitation and the formation of surface complexes between Cd or SMX and carboxyl or hydroxyl groups. The results of this study indicate that rice straw biochar has the potential for simultaneous removal of Cd and SMX from co-contaminated water.
Co-reporter:Ying Chen;Ting-qiang Li;Xuan Han;Zhe-li Ding
Journal of Zhejiang University-SCIENCE B 2012 Volume 13( Issue 6) pp:494-502
Publication Date(Web):2012 June
DOI:10.1631/jzus.B1100356
The selection and breeding of pollution-safe cultivars (PSCs) is a practicable and cost-effective approach to minimize the influx of heavy metal to the human food chain. In this study, both pot-culture and field experiments were conducted to identify and screen out cadmium pollution-safe cultivars (Cd-PSCs) from 50 pakchoi (Brassica rapa L. ssp. chinensis) cultivars for food safety. When treated with 1.0 or 2.5 mg/kg Cd, most of the pakchoi cultivars (>70%) showed greater or similar shoot biomass when compared with the control. This result indicates that pakchoi has a considerable tolerance to soil Cd stress. Cd concentrations in the shoot varied significantly (P<0.05) between cultivars: in two Cd treatments (1.0 and 2.5 mg/kg), the average values were 0.074 and 0.175 mg/kg fresh weight (FW), respectively. Cd concentrations in the shoots of 14 pakchoi cultivars were lower than 0.05 mg/kg FW. In pot-culture experiments, both enrichment factors (EFs) and translocation factors (TFs) of six pakchoi cultivars were lower than 1.0. The field studies further confirmed that the Hangzhouyoudonger, Aijiaoheiye 333, and Zaoshenghuajing cultivars are Cd-PSCs, and are therefore suitable for growth in low Cd-contaminated soils (≤1.2 mg/kg) without any risk to food safety.
Co-reporter:Kai Wang;Jie Zhang;Zhiqiang Zhu;Huagang Huang
Journal of Soils and Sediments 2012 Volume 12( Issue 7) pp:1089-1099
Publication Date(Web):2012 August
DOI:10.1007/s11368-012-0539-4
A major challenge to phytoremediation of co-contaminated soils is developing strategies for efficient and simultaneous removal of multiple pollutants. A pot experiment was conducted to investigate the potential for enhanced phytoextraction of cadmium (Cd) by Sedum alfredii and dissipation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by application of pig manure vermicompost (PMVC).Soil contaminated by Cd (5.53 mg kg−1 DW) was spiked with phenanthrene, anthracene, and pyrene together (250 mg kg−1 DW for each PAH). A pot experiment was conducted in a greenhouse with four treatments: (1) soil without plants and PMVC (Control), (2) soil planted with S. alfredii (Plant), (3) soil amended with PMVC at 5 % (w/w) (PMVC), and (4) treatment 2 + 3 (Plant + PMVC). After 90 days, shoot and root biomass of plants, Cd concentrations in plant and soil, and PAH concentrations in soil were determined. Abundance of PAH degraders in soil, soil bacterial community structure and diversity, and soil enzyme activities and microbial biomass carbon were measured.Application of PMVC to co-contaminated soil increased the shoot and root dry biomass of S. alfredii by 2.27- and 3.93-fold, respectively, and simultaneously increased Cd phytoextraction without inhibiting soil microbial population and enzyme activities. The highest dissipation rate of PAHs was observed in Plant + PMVC treatment. However, neither S. alfredii nor PMVC enhanced PAH dissipation when applied separately. Abundance of PAH degraders in soil was not significantly related to PAH dissipation rate. Plant + PMVC treatment significantly influenced the bacterial community structure. Enhanced PAH dissipation in the Plant + PMVC treatment could be due to the improvement of plant root growth, which may result in increased root exudates, and subsequently change bacterial community structure to be favorable for PAH dissipation.This study demonstrated that remediation of Cd and PAHs co-contaminated soil by S. alfredii can be enhanced by simultaneous application of PMVC. Long-term evaluation of this strategy in co-contaminated field sites is needed.
Co-reporter:T. Q. Li;L. L. Lu;E. Zhu;D. K. Gupta;E. Islam
Russian Journal of Plant Physiology 2008 Volume 55( Issue 6) pp:799-807
Publication Date(Web):2008 November
DOI:10.1134/S1021443708060095
Effects of different zinc concentrations on antioxidant responses in the roots of the hyperaccumulating ecotype (HE) and nonhyperaccumulating ecotype (NHE) of Sedum alfredii Hance were investigated under hydroponic conditions. Growth of NHE was inhibited significantly when Zn concentration was >-50 μM, whereas high Zn concentrations were beneficial for HE growth, and 500 μM Zn induced a significant increase in the root biomass and reducing activity. Malondialdehyde content and electrical conductivity of the NHE roots increased significantly; however, no changes were observed in HE when the Zn concentration was >10 μM, suggesting a severe damage to the membrane of the NHE roots. Proline content in NHE roots increased rapidly, whereas it was low in HE roots even at high Zn concentrations, suggesting that proline may not play an important role in Zn hyperaccumulation. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) in NHE roots increased significantly when the Zn concentration was >10 μM and decreased sharply when the Zn concentration was >-500 μM. For roots of HE, in contrast, no significant changes were observed in SOD, CAT, APX, and GPX activities at low Zn concentrations, whereas a high Zn concentration (≥500 μM) led to a marked enzyme activation, which was in accordance with Zn accumulation in shoots. The results suggest that antioxidant enzymes were important for Zn detoxification in NHE at low Zn concentrations (10–250 μM) and were more critical for Zn detoxification and hyperaccumulation in HE under elevated Zn concentrations (500–1000 μM).
Co-reporter:Ying Huang, Meihua Deng, Tingqiang Li, Jan Japenga, Qianqian Chen, Xiaoe Yang, Zhenli He
Environmental Pollution (July 2017) Volume 226() pp:230-239
Publication Date(Web):1 July 2017
DOI:10.1016/j.envpol.2017.03.059
•National and regional mercury emissions from anthropogenic sources were calculated with updating emission factors in 1980–2012 in China.•The amounts of mercury emission via exhaust gases, effluents and solid wastes were analyzed.•National mercury emissions increased from 448 tons to 2151 tons, and 90% ended up as exhaust gases and solid wastes.•Higher regional emission occurred in eastern areas and lower in western and far northern regions in China, as well as the amount of increased mercury content in soil.China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980–2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980–2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health.Download high-res image (246KB)Download full-size image
1,2,3-Propanetricarboxylicacid, 2-hydroxy-, cadmium salt (1:?)
CADMIUM NITRATE
L-lactate dehydrogenase from rabbit muscle ~140 U/mg
Cadmium oxalate
Glucuronic acid
Charcoal
chlorophyll B from spinach
Chlorophyll,paste