Michael Grabe

Find an error

Name: Grabe, Michael
Organization: University of California , USA
Department: Department of Pharmaceutical Chemistry
Title: Associate(PhD)
Co-reporter:David Argudo, Neville P. Bethel, Frank V. Marcoline, Charles W. Wolgemuth, Michael Grabe
Biophysical Journal 2017 Volume 112, Issue 10(Volume 112, Issue 10) pp:
Publication Date(Web):23 May 2017
DOI:10.1016/j.bpj.2017.03.040
The influence of the membrane on transmembrane proteins is central to a number of biological phenomena, notably the gating of stretch activated ion channels. Conversely, membrane proteins can influence the bilayer, leading to the stabilization of particular membrane shapes, topological changes that occur during vesicle fission and fusion, and shape-dependent protein aggregation. Continuum elastic models of the membrane have been widely used to study protein-membrane interactions. These mathematical approaches produce physically interpretable membrane shapes, energy estimates for the cost of deformation, and a snapshot of the equilibrium configuration. Moreover, elastic models are much less computationally demanding than fully atomistic and coarse-grained simulation methodologies; however, it has been argued that continuum models cannot reproduce the distortions observed in fully atomistic molecular dynamics simulations. We suggest that this failure can be overcome by using chemically and geometrically accurate representations of the protein. Here, we present a fast and reliable hybrid continuum-atomistic model that couples the protein to the membrane. We show that the model is in excellent agreement with fully atomistic simulations of the ion channel gramicidin embedded in a POPC membrane. Our continuum calculations not only reproduce the membrane distortions produced by the channel but also accurately determine the channel’s orientation. Finally, we use our method to investigate the role of membrane bending around the charged voltage sensors of the transient receptor potential cation channel TRPV1. We find that membrane deformation significantly stabilizes the energy of insertion of TRPV1 by exposing charged residues on the S4 segment to solution.
Co-reporter:Neville P. Bethel
PNAS 2016 Volume 113 (Issue 49 ) pp:14049-14054
Publication Date(Web):2016-12-06
DOI:10.1073/pnas.1607574113
The transmembrane protein 16 (TMEM16) family of membrane proteins includes both lipid scramblases and ion channels involved in olfaction, nociception, and blood coagulation. The crystal structure of the fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase suggested a putative mechanism of lipid transport, whereby polar and charged lipid headgroups move through the low-dielectric environment of the membrane by traversing a hydrophilic groove on the membrane-spanning surface of the protein. Here, we use computational methods to explore the membrane–protein interactions involved in lipid scrambling. Fast, continuum membrane-bending calculations reveal a global pattern of charged and hydrophobic surface residues that bends the membrane in a large-amplitude sinusoidal wave, resulting in bilayer thinning across the hydrophilic groove. Atomic simulations uncover two lipid headgroup-interaction sites flanking the groove. The cytoplasmic site nucleates headgroup–dipole stacking interactions that form a chain of lipid molecules that penetrate into the groove. In two instances, a cytoplasmic lipid interdigitates into this chain, crosses the bilayer, and enters the extracellular leaflet, and the reverse process happens twice as well. Continuum membrane-bending analysis carried out on homology models of mammalian homologs shows that these family members also bend the membrane—even those that lack scramblase activity. Sequence alignments show that the lipid-interaction sites are conserved in many family members but less so in those with reduced scrambling ability. Our analysis provides insight into how large-scale membrane bending and protein chemistry facilitate lipid permeation in the TMEM16 family, and we hypothesize that membrane interactions also affect ion permeation.
Co-reporter:Joshua L. Adelman;Chiara Ghezzi;Paola Bisignano;Donald D. F. Loo;Seungho Choe;Jeff Abramson;John M. Rosenberg;Ernest M. Wright
PNAS 2016 Volume 113 (Issue 27 ) pp:E3960-E3966
Publication Date(Web):2016-07-05
DOI:10.1073/pnas.1525378113
Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.
Co-reporter:Joshua L. Adelman and Michael Grabe
Journal of Chemical Theory and Computation 2015 Volume 11(Issue 4) pp:1907-1918
Publication Date(Web):February 18, 2015
DOI:10.1021/ct501134s
Ion channels are responsible for a myriad of fundamental biological processes via their role in controlling the flow of ions through water-filled membrane-spanning pores in response to environmental cues. Molecular simulation has played an important role in elucidating the mechanism of ion conduction, but connecting atomistically detailed structural models of the protein to electrophysiological measurements remains a broad challenge due to the computational cost of reaching the necessary time scales. Here, we introduce an enhanced sampling method for simulating the conduction properties of narrow ion channels using the Weighted ensemble (WE) sampling approach. We demonstrate the application of this method to calculate the current–voltage relationship as well as the nonequilibrium ion distribution at steady-state of a simple model ion channel. By direct comparisons with long brute force simulations, we show that the WE simulations rigorously reproduce the correct long-time scale kinetics of the system and are capable of determining these quantities using significantly less aggregate simulation time under conditions where permeation events are rare.
Co-reporter:Nathan H. Joh;Tuo Wang;Manasi P. Bhate;Yibing Wu;Rudresh Acharya;Mei Hong;Gevorg Grigoryan;William F. DeGrado
Science 2014 Volume 346(Issue 6216) pp:1520-1524
Publication Date(Web):19 Dec 2014
DOI:10.1126/science.1261172

Abstract

The design of functional membrane proteins from first principles represents a grand challenge in chemistry and structural biology. Here, we report the design of a membrane-spanning, four-helical bundle that transports first-row transition metal ions Zn2+ and Co2+, but not Ca2+, across membranes. The conduction path was designed to contain two di-metal binding sites that bind with negative cooperativity. X-ray crystallography and solid-state and solution nuclear magnetic resonance indicate that the overall helical bundle is formed from two tightly interacting pairs of helices, which form individual domains that interact weakly along a more dynamic interface. Vesicle flux experiments show that as Zn2+ ions diffuse down their concentration gradients, protons are antiported. These experiments illustrate the feasibility of designing membrane proteins with predefined structural and dynamic properties.

Co-reporter:Naomi R. Latorraca;Keith M. Callenberg;Jon P. Boyle
The Journal of Membrane Biology 2014 Volume 247( Issue 5) pp:395-408
Publication Date(Web):2014 May
DOI:10.1007/s00232-014-9646-z
Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.
Co-reporter:David Argudo, Neville P. Bethel, Frank V. Marcoline, Michael Grabe
Biochimica et Biophysica Acta (BBA) - Biomembranes (July 2016) Volume 1858(Issue 7) pp:
Publication Date(Web):1 July 2016
DOI:10.1016/j.bbamem.2016.02.003
•The evolution of continuum elastic models of the membrane is briefly outlined.•Membrane elastic models need to incorporate protein's chemistry and geometry.•A fast and accurate hybrid continuum-atomistic model is proposed.•Hybrid model reveals extreme bending of the membrane in the presence of nhTMEM16.Biological membranes deform in response to resident proteins leading to a coupling between membrane shape and protein localization. Additionally, the membrane influences the function of membrane proteins. Here we review contributions to this field from continuum elastic membrane models focusing on the class of models that couple the protein to the membrane. While it has been argued that continuum models cannot reproduce the distortions observed in fully-atomistic molecular dynamics simulations, we suggest that this failure can be overcome by using chemically accurate representations of the protein. We outline our recent advances along these lines with our hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy of continuum-atomistic methodologies will make it possible to simulate large scale, slow biological processes, such as membrane morphological changes, that are currently beyond the scope of other computational approaches. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.Download high-res image (335KB)Download full-size image
Co-reporter:Frank V. Marcoline, Neville Bethel, Christopher J. Guerriero, Jeffrey L. Brodsky, Michael Grabe
Structure (4 August 2015) Volume 23(Issue 8) pp:1526-1537
Publication Date(Web):4 August 2015
DOI:10.1016/j.str.2015.05.014
•Incorporation of PDB2PQR for automated protein preparation•A new model for determining membrane-induced pKa shifts•Detailed electrostatic analysis on the TRPV1 ion channel•A survey of the electrostatic properties of 1,614 membrane protein structuresThe electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information.
Proton
VALINOMYCIN
HYDROGEN CARBONATE
Galactose
Hydrogen cation