Guangcun He

Find an error

Name:
Organization: Wuhan University
Department: Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences
Title:
Co-reporter:Yongfu Qiu;Jianping Guo;Shengli Jing;Lili Zhu
Euphytica 2014 Volume 198( Issue 3) pp:369-379
Publication Date(Web):2014 August
DOI:10.1007/s10681-014-1112-6
The brown planthopper (Nilaparvata lugens Stål; BPH) is a severe constraint to rice (Oryza sativa) production. A particularly important approach to controlling this insect pest is the identification and characterization of BPH resistance genes and the subsequent incorporation of the most effective ones into cultivars. Rice var. T12 has been reported to carry resistance gene BPH7 (previously designated bph7) that has not yet been assigned to a chromosome location and whose resistance mechanism is still unknown. In the study reported here we identified and mapped this gene using F2 and backcrossing populations and characterized its resistance in the rice var. 93-11 genetic background using near isogenic lines (NILs). Our analysis of the 93-11/T12 F2 population revealed that the BPH7 gene is located on the long arm of chromosome 12 between simple sequence repeat markers RM28295 and RM313. Subsequent fine mapping placed this gene more precisely in a region flanked by the markers RM3448 and RM313 which are 150 kb apart in the Nipponbare genome and 300 kb apart in the 93-11 genome. BPH7 explained 38.3 % of the phenotypic variance of BPH resistance in the F2 populations. Characterization of the BPH7-mediated resistance revealed that the settlement of the BPH on plants and the survival rate and population growth rate of the BPH were not different significantly between NIL-BPH7 and 93-11 plants. The NIL-BPH7 plants showed significant tolerance to the insects at the seedling and adult stages compared with the susceptible parent 93-11. Our results demonstrate that tolerance is the major component in the resistance conferred by BPH7. The gene mapping of BPH7 should be of great benefit for gene map-based cloning and in plant breeding programs for BPH-resistant rice lines.
Co-reporter:Yongfu Qiu;Jianping Guo;Shengli Jing;Lili Zhu
Theoretical and Applied Genetics 2012 Volume 124( Issue 3) pp:485-494
Publication Date(Web):2012 February
DOI:10.1007/s00122-011-1722-5
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.
Co-reporter:Jiangbo Zhou;Yuan-Ming Zhang;Haiyan Lü;Aiqing You;Lili Zhu
Molecular Breeding 2012 Volume 30( Issue 2) pp:717-729
Publication Date(Web):2012 August
DOI:10.1007/s11032-011-9657-8
Genetic analysis across a whole plant genome based on pedigree information offers considerable potential for enhancing genetic gain from plant breeding programs through quantitative trait loci (QTL) mapping and marker-assisted selection. Here, we report its application for graphically genotyping varieties used in Chinese japonica rice (Oryza sativa L.) pedigree breeding programs. We identified 34 important chromosomal regions from the founder parent that are under selection in the breeding programs, and by comparing donor genomic regions that are under selection with QTL locations of agronomic traits, we found that QTL clustered in important genomic regions, in accordance with association analyses of natural populations and other previous studies. The convergence of genomic regions under selection with QTL locations suggests that donor genomic regions harboring key genes/QTL for important agronomic traits have been selected by plant breeders since the 1950s from the founder rice plants. The results provide better understanding of the effects of selection in breeding programs on the traits of rice cultivars. They also provide potentially valuable information for enhancing rice breeding programs through screening candidate parents for targeted molecular markers, improving crop yield potential and identifying suitable genetic material for use in future breeding programs.
Co-reporter:Linglin Wan;Wenjun Zha;Xiaoyan Cheng;Chuan Liu;Lu Lv;Caixiang Liu
Planta 2011 Volume 233( Issue 2) pp:309-323
Publication Date(Web):2011 February
DOI:10.1007/s00425-010-1301-z
Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.
Co-reporter:Caixiang Liu, Fuhua Hao, Jing Hu, Weilin Zhang, Linglin Wan, Lili Zhu, Huiru Tang, and Guangcun He
Journal of Proteome Research 2010 Volume 9(Issue 12) pp:6774-6785
Publication Date(Web):2017-2-22
DOI:10.1021/pr100970q
Brown planthopper (BPH) is a notorious pest of rice plants attacking leaf sheaths and seriously affecting global rice production. However, how rice plants respond against BPH remains to be fully understood. To understand systems metabolic responses of rice plants to BPH infestation, we analyzed BPH-induced metabolic changes in leaf sheaths of both BPH-susceptible and resistant rice varieties using NMR-based metabonomics and measured expression changes of 10 relevant genes using quantitative real-time PCR. Our results showed that rice metabonome was dominated by more than 30 metabolites including sugars, organic acids, amino acids, and choline metabolites. BPH infestation caused profound metabolic changes for both BPH-susceptible and resistant rice plants involving transamination, GABA shunt, TCA cycle, gluconeogenesis/glycolysis, pentose phosphate pathway, and secondary metabolisms. BPH infestation caused more drastic overall metabolic changes for BPH-susceptible variety and more marked up-regulations for key genes regulating GABA shunt and biosynthesis of secondary metabolites for BPH-resistant variety. Such observations indicated that activation of GABA shunt and shikimate-mediated secondary metabolisms was vital for rice plants to resist BPH infestation. These findings filled the gap of our understandings in the mechanistic aspects of BPH resistance for rice plants and demonstrated the combined metabonomic and qRT-PCR analysis as an effective approach for understanding plant−herbivore interactions.
Co-reporter:Yongfu Qiu;Jianping Guo;Shengli Jing;Lili Zhu
Theoretical and Applied Genetics 2010 Volume 121( Issue 8) pp:1601-1611
Publication Date(Web):2010 November
DOI:10.1007/s00122-010-1413-7
Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive insect pests of rice. Exploring resistance genes from diverse germplasms and incorporating them into cultivated varieties are critical for controlling this insect. The rice variety Swarnalata was reported to carry a resistance gene (designated Bph6), which has not yet been assigned to a chromosome location and the resistance mechanism is still unknown. In this study, we identified and mapped this gene using the F2 and backcrossing populations and characterized its resistance in indica 9311 and japonica Nipponbare using near isogenic lines (NILs). In analysis of 9311/Swarnalata F2 population, the Bph6 gene was located on the long arm of chromosome 4 between the SSR markers RM6997 and RM5742. The gene was further mapped precisely to a 25-kb region delimited between the STS markers Y19 and Y9; and the distance between these markers is 25-kb in Nipponbare genome. The Bph6 explained 77.5% of the phenotypic variance of BPH resistance in F2 population and 84.9% in BC2F2 population. Allele from Swarnalata significantly increased resistance to the BPH, resulted in a reduced damage score. In characterization of Bph6-mediated resistance, the BPH insects showed significant preference between NIL-9311 and 9311 in 3 h and between NIL-NIP and Nipponbare in 120 h after release. BPH growth and development were inhibited, and the insect’s survival rates were lower on Bph6-NIL plants, compared with the parents 9311 and Nipponbare. The results indicate that the Bph6 exerted prolonged antixenotic and antibiotic effects in Bph6-NIL plants, and NIL-9311 plants showed a quicker and stronger effect toward BPH than NIL-NIP plants.
Co-reporter:Bo Du;Weilin Zhang;Bingfang Liu;Jing Hu;Zhe Wei;Zhenying Shi;Ruifeng He;Lili Zhu;Rongzhi Chen;Bin Han
PNAS 2009 Volume 106 (Issue 52 ) pp:22163-22168
Publication Date(Web):2009-12-29
DOI:10.1073/pnas.0912139106
Planthoppers are highly destructive pests in crop production worldwide. Brown planthopper (BPH) causes the most serious damage of the rice crop globally among all rice pests. Growing resistant varieties is the most effective and environment-friendly strategy for protecting the crop from BPH. More than 19 BPH-resistance genes have been reported and used to various extents in rice breeding and production. In this study, we cloned Bph14, a gene conferring resistance to BPH at seedling and maturity stages of the rice plant, using a map-base cloning approach. We show that Bph14 encodes a coiled-coil, nucleotide-binding, and leucine-rich repeat (CC-NB-LRR) protein. Sequence comparison indicates that Bph14 carries a unique LRR domain that might function in recognition of the BPH insect invasion and activating the defense response. Bph14 is predominantly expressed in vascular bundles, the site of BPH feeding. Expression of Bph14 activates the salicylic acid signaling pathway and induces callose deposition in phloem cells and trypsin inhibitor production after planthopper infestation, thus reducing the feeding, growth rate, and longevity of the BPH insects. Our work provides insights into the molecular mechanisms of rice defense against insects and facilitates the development of resistant varieties to control this devastating insect.
Co-reporter:RongZhi Chen;YuFang Pan;Yang Wang;LiLi Zhu
Science Bulletin 2009 Volume 54( Issue 14) pp:2354-2362
Publication Date(Web):2009 July
DOI:10.1007/s11434-009-0349-2
Photoperiod and temperature-sensitive genetic male sterility (PGMS and TGMS) plants have a number of desirable characteristics for hybrid production. Two-line hybrids developed using the PGMS/TGMS system now account for a large proportion of rice production in China. In this paper, we summarize recent advances on molecular regulation mechanisms and genetics of PGMS/TGMS in rice. We suggest that temperature-sensitive splicing, an important posttranscriptional regulatory mechanism in modulating gene expression and eventually development and differentiation, is also an important molecular regulation mechanism of TGMS in rice. We review those factors involved in temperature-sensitive splicing like cis splice site, snRNA, trans pre-mRNA splicing protein and SR proteins, and delineate that splicing could be regulated by a complex cell signaling pathway. These might shed light on other unknown molecular PGMS/TGMS mechanisms.
Co-reporter:Gang Li;Wei Hu;Rui Qin;Huajun Jin;Guangxuan Tan;Lili Zhu
Genetica 2008 Volume 134( Issue 2) pp:169-180
Publication Date(Web):2008 October
DOI:10.1007/s10709-007-9222-x
Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa–O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F1 hybrid (52.5%), BC1 (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.
Co-reporter:Huajun Jin;Wei Hu;Zhe Wei;Linglin Wan;Gang Li
Theoretical and Applied Genetics 2008 Volume 117( Issue 8) pp:1271-1279
Publication Date(Web):2008 November
DOI:10.1007/s00122-008-0861-9
Interspecific hybridization and polyploidization may involve programmed genetic and epigenetic changes. In this study, we used the methylation-sensitive amplified polymorphism (MSAP) method to survey cytosine methylation alterations that occurred in F1 hybrid and BC1 progeny following interspecific hybridization between Oryza sativa and O. officinalis. Across all 316 parental methylated sites, 25 (7.9%) cytosine methylation alterations were detected in the F1 and/or BC1 progeny. Thirty additional cytosine methylation alterations were detected at parental non-methylated or novel sites. In total, 55 cytosine methylation alterations (90.9% of all alterations) were detected in the F1 hybrid, which were maintained in the BC1 progeny. The alterations in cytosine methylation were biased toward the O. officinalis parent and were in some cases repeatable in independent hybridizations between O. sativa and O. officinalis. Twelve fragments showing cytosine methylation alterations were isolated, sequenced and subsequently validated by methylation-sensitive Southern blot analysis. Where possible, we designed species-specific primers to amplify the polymorphic transcripts from either the O. sativa or the O. officinalis parent using reverse transcription (RT)-PCR in combination with single-strand conformation polymorphism (SSCP) analysis. In four of five cases, modified gene expression could be correlated with the altered cytosine methylation pattern. Our results demonstrated cytosine methylation alterations induced by interspecific hybridization between a rice cultivar and its wild relative, and indicated a direct relationship between cytosine methylation alteration and gene expression variation.
Co-reporter:Zhifan Yang;Haiyuan Yang
Archives of Insect Biochemistry and Physiology 2007 Volume 64(Issue 2) pp:
Publication Date(Web):9 JAN 2007
DOI:10.1002/arch.20162

Two full-length P450 cDNAs, CYP6AX1 and CYP6AY1, were cloned from the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae). Both CYP6AX1 and CYP6AY1 are typical microsomal P450s and their deduced amino acid sequences share common characteristics with other members of the insect P450 CYP6 family. CYP6AX1 and CYP6AY1 show the highest percent identity (36%) of amino acid to each other; both of them have 31–33% amino acid identity with CYP6B1 from Papilio polyxenes (Lepidoptera: Papilionidae), CYP6B4 from Papilio glaucus (Lepidoptera: Papilionidae), and CYP6B8 from Helicoverpa zea (Lepidoptera: Noctuidae). Phylogenetic analysis showed the clustering of CYP6AX1 and CYP6AY1 was in the clade including CYP6AE1 from Depressaria pastinacella (Lepidoptera: Oecophoridae) and the CYP6B family members from Helicoverpa and Papilio species. Northern blot analysis revealed that both of the P450s were induced by the resistant rice variety B5 (Oryza sativa L), and CYP6AY1 was expressed at a higher level than CYP6AX1. The results suggest that more than one P450s are likely involved in metabolism of rice allelochemicals and that they are possibly important components in adaptation of Nilaparvata lugens to host rice. Arch. Insect Biochem. Physiol. 64:88–99, 2007. © 2007 Wiley-Liss, Inc.

Co-reporter:Zhi Yong Xiong, Guang Xuan Tan, Guang Yuan He, Guang Cun He and Yun Chun Song
Cell Research 2006 16(3) pp:260-266
Publication Date(Web):
DOI:10.1038/sj.cr.7310033
The genomic structures of Oryza sativa (A genome) and O. meyeriana (G genome) were comparatively studied using bicolor genomic in situ hybridization (GISH). GISH was clearly able to discriminate between the chromosomes of O. sativa and O. meyeriana in the interspecific F1 hybrids without blocking DNA, and co-hybridization was hardly detected. The average mitotic chromosome length of O. meyeriana was found to be 1.69 times that of O. sativa. A comparison of 4,6-diamidino-2-phenylindole staining showed that the chromosomes of O. meyeriana were more extensively labelled, suggesting that the G genome is amplified with more repetitive sequences than the A genome. In interphase nuclei, 9-12 chromocenters were normally detected and nearly all the chromocenters constituted the G genome-specific DNA. More and larger chromocenters formed by chromatin compaction corresponding to the G genome were detected in the hybrid compared with its parents. During pachytene of the F1 hybrid, most chromosomes of A and G did not synapse each other except for 1-2 chromosomes paired at the end of their arms. At meiotic metaphase I, three types of chromosomal associations, i.e. O. sativa-O. sativa (A-A), O. sativa-O. meyeriana (A-G) and O. meyeriana-O. meyeriana (G-G), were observed in the F1 hybrid. The A-G chromosome pairing configurations included bivalents and trivalents. The results provided a foundation toward studying genome organization and evolution of O. meyeriana.
Co-reporter:Zhifan Yang;Futie Zhang;Qing He
Archives of Insect Biochemistry and Physiology 2005 Volume 59(Issue 2) pp:
Publication Date(Web):16 MAY 2005
DOI:10.1002/arch.20055

To investigate the molecular response of brown planthopper, Nilaparvata lugens (BPH) to BPH-resistant rice plants, we isolated cDNA fragments of the genes encoding for carboxylesterase (CAR), trypsin (TRY), cytochrome P450 monooxygenase (P450), NADH-quinone oxidoreductase (NQO), acetylcholinesterase (ACE), and Glutathione S-transferase (GST). Expression profiles of the genes were monitored on fourth instar nymphs feeding on rice varieties with different resistance levels. Northern blot hybridization showed that, compared with BPH reared on susceptible rice TN1, expression of the genes for P450 and CAR was apparently up-regulated and TRY mRNA decreased in BPH feeding on a highly resistant rice line B5 and a moderately resistant rice variety MH63, respectively. Two transcripts of GST increased in BPH feeding on B5; but in BPH feeding on MH63, this gene was inducible and its expression reached a maximum level at 24 h, and then decreased slightly. The expression of NQO gene was enhanced in BPH on B5 plants but showed a constant expression in BPH on MH63 plants. No difference in ACE gene expression among BPH on different rice plants was detected by the RT-PCR method. The results suggest these genes may play important roles in the defense response of BPH to resistant rice. Arch. Insect Biochem. Physiol. 59:59–66, 2005. © 2005 Wiley-Liss, Inc.

Co-reporter:Xiaoyan Cheng, Lili Zhu, Guangcun He
Molecular Plant (May 2013) Volume 6(Issue 3) pp:621-634
Publication Date(Web):1 May 2013
DOI:10.1093/mp/sst030
ABSTRACTThe brown planthopper (BPH) is the most notorious pest of rice (Oryza sativa). Studies of rice–BPH interaction have contributed to development of new rice varieties, offering an effective means for long-lasting control of BPH. Here, we review the status of knowledge of the molecular basis of rice–BPH interaction, from the perspective of immunity. The BPH has complicated feeding behaviors on rice, which are mainly related to host resistance. Now, 24 resistance genes have been detected in rice, indicating gene-for-gene relationships with biotypes of the BPH. However, only one BPH resistance gene (Bph14) was identified and characterized using map-based cloning. Bph14 encodes an immune receptor of NB–LRR family, providing a means for studying the molecular mechanisms of rice resistance to BPH. Plant hormones (e.g. salicylic acid and jasmonate/ethylene), Ca2+, mitogen-activated protein kinases (MAPKs), and OsRac1 play important roles in the immune response of rice to BPH. Signal transduction leads to modifying expression of defense-related genes and defense mechanisms against BPH, including sieve tube sealing, production of secondary metabolites, and induction of proteinase inhibitor. A model for the molecular interactions between rice and the BPH is proposed, although many details remain to be investigated that are valuable for molecular design of BPH-resistant rice varieties.SUMMARYThis article reviews the current status of molecular interactions between rice and brown planthopper (BPH) from the perspective of plant immunity. It focuses on the rice responses after BPH attacks and the genetic and molecular mechanism of resistance signaling transduction.
Co-reporter:Shengli Jing, Yan Zhao, Bo Du, Rongzhi Chen, ... Guangcun He
Current Opinion in Insect Science (February 2017) Volume 19() pp:82-87
Publication Date(Web):1 February 2017
DOI:10.1016/j.cois.2017.03.005
•The cloned resistance genes provide a basis for elucidating the molecular mechanism of BPH–rice interaction.•The transcriptomic and proteomic data of BPH saliva accumulate rapidly and screened dozens of candidate effectors.•Genes responsible for virulence were mapped to the BPH chromosomes.Rice (Oryza sativa L.) and the brown planthopper (Nilaparvata lugens (Stål)) form a model system for dissection of the mechanism of interaction between insect pest and crop. In this review, we focus on the genomics of BPH–rice interaction. On the side of rice, a number of BPH-resistance genes have been identified genetically. Thirteen of these genes have been cloned which shed a light on the molecular basis of the interaction. On the aspect of BPH, a lot of salivary proteins have been identified using transcriptome and proteome techniques. The genetic loci of virulence were mapped in BPH genome based on the linkage map. The understanding of interaction between BPH and rice will provide novel insights into efficient control of this pest.
Co-reporter:Ba Du, Zhe Wei, Zhanqi Wang, Xiaoxiao Wang, Xinxin Peng, Bo Du, Rongzhi Chen, Lili Zhu, Guangcun He
Journal of Plant Physiology (1 July 2015) Volume 183() pp:13-22
Publication Date(Web):1 July 2015
DOI:10.1016/j.jplph.2015.03.020
Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties.
Mitogen-activated protein kinase
Ribonic acid
(3R,4S,5R)-Tetrahydro-2H-pyran-2,3,4,5-tetraol
Kinase(phosphorylating), protein serine/threonine
Cyclopentaneaceticacid, 3-oxo-2-(2Z)-2-penten-1-yl-, (1R,2R)-
D-RIBOFURANOSE (9CI)