Co-reporter: Angèle Monney, Flavia Nastri and Martin Albrecht
pp: 5655-5660
Publication Date(Web):18 Feb 2013
DOI: 10.1039/C3DT50424G
The Nδ,Nε-dimethylated histidinium salt (His*) was tethered to oligopeptides and metallated to form Ir(III) and Rh(I) NHC complexes. Peptide-based histidylidene complexes containing only alanine, Ala–Ala–His*–[M] and Ala–Ala–Ala–His*–[M] were synthesised ([M] = Rh(cod)Cl, Ir(Cp*)Cl2), as well as oligopeptide complexes featuring a potentially chelating methionine and tyrosine residue, Met–Ala–Ala–His*–Rh(cod)Cl and Tyr–Ala–Ala–His*–Rh(cod)Cl. Chelation of the methionine-containing histidylidene ligand was induced by halide abstraction from the rhodium centre, while tyrosine remained non-coordinating under identical conditions. High catalytic activities in hydrosilylation were achieved with all peptide-based rhodium complexes. The cationic SMet,CHis*-bidentate peptide rhodium catalyst outperformed the monodentate neutral peptide complexes and constitutes one of the most efficient rhodium carbene catalysts for hydrosilylation, providing new opportunities for the use of peptides as N-heterocyclic carbene ligands in catalysis.
Co-reporter: Angèle Monney, Elisabetta Alberico, Yannick Ortin, Helge Müller-Bunz, Serafino Gladiali and Martin Albrecht
pp: NaN8821-8821
Publication Date(Web):2012/05/16
DOI: 10.1039/C2DT30799E
We report on the synthesis, metal coordination, and catalytic impact of histidylidene, a histidine-derived N-heterocyclic carbene (NHC) ligand. The histidinium salt 3, comprising methyl substituents at both heterocyclic nitrogens and protected at the C- and N-terminus of the amino acid, was rhodated and iridated by a transmetallation protocol using Ag2O. Ambient temperature and short reaction times were pivotal for full retention of configuration at the α-carbon. The stereospecificity of the reaction was conveniently probed by 31P NMR spectroscopy after transmetallation with rhodium(I) and coordination of enantiopure (S)-Ph-binepine. The histidylidene rhodium complexes are highly efficient catalysts for the mild hydrosilylation of ketones. For the cationic complexes [Rh(cod)(histidylidene)(phosphine)]+, lowering the temperature shifted the rate-limiting step of the catalytic reaction to an earlier stage that is not enantioselective. Hence the asymmetric induction—which is governed by the chiral phosphine—did not improve at low temperature.
Co-reporter: Angèle Monney, Elisabetta Alberico, Yannick Ortin, Helge Müller-Bunz, Serafino Gladiali and Martin Albrecht
pp: 8813-8821
Publication Date(Web):16 May 2012
DOI: 10.1039/C2DT30799E
We report on the synthesis, metal coordination, and catalytic impact of histidylidene, a histidine-derived N-heterocyclic carbene (NHC) ligand. The histidinium salt 3, comprising methyl substituents at both heterocyclic nitrogens and protected at the C- and N-terminus of the amino acid, was rhodated and iridated by a transmetallation protocol using Ag2O. Ambient temperature and short reaction times were pivotal for full retention of configuration at the α-carbon. The stereospecificity of the reaction was conveniently probed by 31P NMR spectroscopy after transmetallation with rhodium(I) and coordination of enantiopure (S)-Ph-binepine. The histidylidene rhodium complexes are highly efficient catalysts for the mild hydrosilylation of ketones. For the cationic complexes [Rh(cod)(histidylidene)(phosphine)]+, lowering the temperature shifted the rate-limiting step of the catalytic reaction to an earlier stage that is not enantioselective. Hence the asymmetric induction—which is governed by the chiral phosphine—did not improve at low temperature.
Co-reporter: Angèle Monney, Flavia Nastri and Martin Albrecht
pp: NaN5660-5660
Publication Date(Web):2013/02/18
DOI: 10.1039/C3DT50424G
The Nδ,Nε-dimethylated histidinium salt (His*) was tethered to oligopeptides and metallated to form Ir(III) and Rh(I) NHC complexes. Peptide-based histidylidene complexes containing only alanine, Ala–Ala–His*–[M] and Ala–Ala–Ala–His*–[M] were synthesised ([M] = Rh(cod)Cl, Ir(Cp*)Cl2), as well as oligopeptide complexes featuring a potentially chelating methionine and tyrosine residue, Met–Ala–Ala–His*–Rh(cod)Cl and Tyr–Ala–Ala–His*–Rh(cod)Cl. Chelation of the methionine-containing histidylidene ligand was induced by halide abstraction from the rhodium centre, while tyrosine remained non-coordinating under identical conditions. High catalytic activities in hydrosilylation were achieved with all peptide-based rhodium complexes. The cationic SMet,CHis*-bidentate peptide rhodium catalyst outperformed the monodentate neutral peptide complexes and constitutes one of the most efficient rhodium carbene catalysts for hydrosilylation, providing new opportunities for the use of peptides as N-heterocyclic carbene ligands in catalysis.